
PARTIAL ROUGH ROUGH DRAFT

Preface: There are 2 primary additions contained
in this second draft: an expanded introduction which
now includes visualizations to explain how I am rea-
soning about arguments and the newly added section
on guile. In the process of adding these things, I have
gathered some doubts about how I am approaching
this paper.
The biggest concern I have is the treatment of inter-

mediate representations as black boxes. I restrict my-
self to examining the source code as input and what-
ever representation the language considers to be the
”final” output - for Python and Guile this is bytecode,
but for C this will be machine code. This seems use-
ful to contain the scope of the paper, as otherwise the
analysis and description parts could get out of hand
(if they are not already). However, I am worried
that ignoring the intermediate representations pre-
vents me from attaining certain insights. The pur-
pose of examining the output of compilers is to un-
derstand how the computer is processing the informa-
tion given to it by the human and to inform the im-
plementation of the framework. The end result gives
a concrete and literal understanding of what actions
the computer decides to take based on the human’s
input, but it doesn’t tell me how the computer ar-
rived at those conclusions or why it made the deci-
sions it did. What happened during the Guile section
is that I looked at intermediate representations in or-
der to inform my description of the language, but I
did not directly discuss these representations in the
paper. This might be the best compromise, and it is
how I will proceed for the time being.
I am also beginning to doubt the idea of hav-

ing a separate section for the ”simple function and
call”. The problem is that it undercuts the positional
value section because the simple function and call is
so similar to the positional value examples. How-
ever, I am still partial towards including this sec-
tion. First, it avoids priveliging any particular fea-
ture over the others. While it is true that all of the
languages in this paper use positional values as the
default (with Python fitting this idea less well than
the others), this is mostly an historical accident and
not due to the fundamental nature of function argu-
ments. For example, the Modula-3 language defini-
tion (https://doi.org/10.1145/142137.142141) states

”The list of bindings is rewritten to fit the signa-
ture of P’s type as follows: First, each positional
binding actual is converted and added to the list of
keyword bindings by supplying the name of the i’th

formal parameter, where actual is the i’th binding
in Bindings.” Also, there are sometimes positional-
specific aspects to discuss in the positional section
which are not relevant to the simple function and call;
for example, in Python it is considered simpler for a
function to accept either positional or named values
than it is to accept positional values only (this is quite
abnormal relative to the other languages in this pa-
per). Second, it gives a clear starting point for some-
one who is looking at the paper and only cares about
some of the features. The section title ”Simple Func-
tion and Call” clearly indicates to the reader that this
is an expectation-setting section which should be read
regardless of the reader’s particular interest. In con-
trast, it is less intuitive to read the positional values
section if one is mainly concerned with, for example,
default values.

Additionally, I am uncertain what subject of study
this paper actually falls into. Looking at the paper
by word count, much of it is focused on the way that
programming languages operate and accept input - so,
computer science right? Except that my primary con-
cern is not about the computer itself, but the way that
humans use source code to communicate, both with
the computer and with each other. So is this infor-
mation science because I’m concerned with the trans-
mission of information? Is it sociological because I’m
concerned with human-to-human interaction, albeit
indirect and asynchronous interaction? Or is it com-
puter science that (should) draw on other fields in
order to enhance the validity of the work? I’m not
sure. I’m also uncertain how useful it is to precisely
define what the ”subject of study” is, or if it is even
realistic to expect that any given work will fit neatly
into exactly one subject of study.

Finally, I am growing increasingly skeptical that
LaTeX is the best tool for publishing, particularly
when when compared to web technologies (HTML,
CSS, JavaScript). LaTeX both creates extra work for
me and fails to provide as many features as the web.
For example, the current draft includes many code
boxes with code that spills out of the box. Many of

1

PARTIAL ROUGH ROUGH DRAFT

the code samples which fit the box have poor format-
ting in order to make them fit. In some cases it is
my example code which can be modified, but in other
cases it is code samples which come from third par-
ties; modifying these would be dishonest. Fixing this
problem wastes my time as the author and decreases
readability for the audience. Web technologies solve
this problem elegantly by providing a scroll bar for
text that spills over. Web technologies also provide
other useful dynamic features. For example, if the
text size is too small for a particular reader they can
zoom in on a PDF but this will force the reader to
constantly scroll around the page which is particu-
larly inconvenient in the two-column format (I know
this from personal experience). Modern web browsers
implement zooming by changing the font size and au-
tomatically updating the page layout based on style
rules. Web technologies also allow me to use more
powerful presentation tools in my paper. For exam-
ple, a code sample which is associated with a series
of paragraphs can be attached to that text in the mar-
gin and scroll along with the reader so it is always
accessible (by using the ”sticky” attribute). In places
where I reference a previous code sample - for exam-
ple when I compare the bytecode of a specific feature
to the bytecode for the simple function/call - I can im-
plement a pop-up box that appears when the user hov-
ers over the text for ease of reference. Of course, this
is still a paper not a website. The paper will continue
to be published as a single portable self-contained doc-
ument. The fact that the document opens in Firefox
instead of Evince will not change this important at-
tribute.
On the topic of more powerful publishing features

and pop-up boxes, I feel the need to address my cita-
tions. I understand that the citations in the current
draft are extremely cumbersome to read past. How-
ever, I also feel that providing precise location infor-
mation is important. The purpose of citations are not
simply to justify my claims, they are meant to help a
reader who wants to explore a particular aspect of the
paper, or who wants to examine a tangentially related
topic. I have frequently been frustrated when reading
other papers that they make claims about how pro-
grams function but provide no information about how
they justify this claim - whether through source code,

documentation, or simply running the program. I do
not want any of my readers to have a similar frustra-
tion. With the move to web technologies, I can have
WikiPedia-style citations which are simply a number
that pops out a box containing detailed information
when hovered. This will help me achieve my goal of
providide precise information relevant to the specific
citaiton index without inflating my citation count ar-
tificially (for example, by keeping the Guile repository
as a single citation but continuing to provide file and
line numbers through the pop out box).

The next draft of this paper will primarily focus on
converting the format to web technologies with min-
imal changes to content. However, I also want to
explore what the analysis will look like. This seems
complicated because I want to discuss each feature in
isolation but I also want to discuss how they inter-
act with each other. There are far too many features
to describe each possible pairing, and even if I did
this would still not be complete. For example, named
values, default values, and caller destructuring could
interact in ways that are not fully describable in iso-
lated pairings. I will not really know what this part
will look like until I finish describing all of the lan-
guages but I want to start trying things out now to
get the brain juices flowing. =)

2

Comparative Function Arguments

Skyler Ferris

1 Introduction

Functions are one of the core abstractions that pro-
grammers use. These functions - and their authors -
have to communicate with different calling sites - and
their authors - in different contexts. This communi-
cation is performed through the use of arguments.
However, the term ”argument” is used in different
ways depending on the speaker, listener, and context.
For example, people who are working on a new func-
tion written in the C programming language might
use the word ”arguments” to refer to the set of names
that appear between the parantheses in the function
signature. Those same people who are later debug-
ging code which includes a call to that function might
use the word ”arguments” to refer to the values which
are given to the function. This informal use of the
word is sufficient for day-to-day use, but it starts to
break down when examined more closely.

Consider that the Rust programming lanugage al-
lows programmers to specify arguments using one of
two mechanisms. In the common case, programmers
can use a plain name and type:

fn jump_plain(starting: &Point) -> Point {

Point {

x: starting.x,

y: starting.y * 2

}

}

It would not be controvertial to claim that this
function contains one argument. This argument hap-
pens to be associated with a local variable named
starting which is guaranteed to contain data of type
Point.

When it is useful, programmers can also specify an

argument by a pattern 1 and type:

fn jump_pattern(Point {

x: h, // horizontal

y: v // vertical

}: &Point)

-> Point {

Point {

x: *h,

y: *v * 2

}

}

Does this version contain one argument or two?
We could say that it contains 2 arguments, h and v.
In the context of the function definition this would
make sense. However, at the calling site both appear
to accept only a single argument:

jump_plain (&uut);

jump_pattern(&uut);

Consider also the conventions in shell programming
languages. Shell functions might include ”options”
which are arguments that may or may not be related
to the argument that follows it. For example, con-
sider the following function:

1Technically the ”plain name” is also a pattern, just a very
simple one.

3

PARTIAL ROUGH ROUGH DRAFT 1 INTRODUCTION

function main {

PRINT_VERSION=false

declare -a IGNORE_LIST

GETOPT_OUTPUT=$(\

getopt -o ’vi:’ \

--long ’version,ignore:’ \

-- "$@")

eval set -- "$GETOPT_OUTPUT"

unset GETOPT_OUTPUT

while true; do

case "$1" in

’-v’|’--version’)

PRINT_VERSION=true

shift

continue

;;

’-i’|’--ignore’)

IGNORE_LIST+=("$2")

shift 2

continue

;;

’--’)

shift

break

;;

esac

done

if ["$PRINT_VERSION" = true]; then

echo "Version 0.1"

else

echo "${IGNORE_LIST[*]}"

fi

}

4

1.1 What is an argument? PARTIAL ROUGH ROUGH DRAFT 1 INTRODUCTION

Some of the ways this function could be called in-
clude (1) main --ignore=foo, (2) main --ignore

foo, (3) main -ifoo, or (4) main -i foo. All of
these calls are semantically synonymous. However,
in 1 and 3, the bash interpreter initially sees only
a single argument while in 2 and 4 it sees 2 sepa-
rate arguments. In either case, the call to getopt

reorganizes the arguments so that the name (either
”--ignore” or ”-i”) is separate from the value (”foo”).
This makes the ”number of arguments” an ambigu-
ous value.

1.1 What is an argument?

So, how can we construct a definition of ”function
argument” which does not suffer from the above de-
ficiencies? The definition provided by the C stan-
dard is a good place to start: it precisely defines 2
relevant terms, parameter and argument [7, Section
3]. It defines a parameter as an ”object 2 declared
as part of a function declaration or definition that
acquires a value on entry to the function, or an iden-
tifier from the comma-separated list bounded by the
parentheses immediately following the macro name
in a function-like macro definition”. It defines an
argument as an ”expression in the comma-separated
list bounded by the parentheses in a function call
expression, or a sequence of preprocessing tokens in
the comma-separated list bounded by the parenthe-
ses in a function-like macro invocation”. Addition-
ally, the standard defines a relationship between ar-
guments and parameters: ”In preparing for the call
to a function, the arguments are evaluated, and each
parameter is assigned the value of the corresponding
argument” [7, Section 6.5.2.2 paragraph 4]. We could
visualize the description with the below diagram.

Parameter Argument

Here the circles represent concepts within the C
model of computation - the local variable declared by

2Use of the term ”object” here refers to any region of
memory, not the concept of an object popularized by object-
oriented programming.

the parameter and the value given as an argument.
The line between them represents their relationship:
the expectation that the local variables will be ini-
tialized with the values.

While this visualization fully encompasses the
model described by the C standard, it does not fully
encompass the mental model used by some program-
mers. For example, consider this C function:

/*

* Calculate the division of two numbers.

*

* lhs: The dividend

* rhs: The divisor

*/

float divide(float lhs, float rhs) {

return lhs / rhs;

}

The comment above the function reveals 2 elements
in the author’s mental model which are absent from
the visualization: an explanation and a name. The
explanation, such as the text ”the dividend”, commu-
nicates the intention of an argument’s use from one
person (an author) to another (a caller). The com-
ment also clarifies that the names ”lhs” and ”rhs”
are not simply the textual representation of local
variables: they refer to the argument itself, even in
contexts where the local variable is not directly rel-
evant. In order to accommodate this, we need to
update the visualization with ”name” and ”explana-
tion” nodes. The explanation node is connected di-
rectly to the name a established by the comment. It
is indirectly connected to both the parameter and the
value through the name.

5

1.1 What is an argument? PARTIAL ROUGH ROUGH DRAFT 1 INTRODUCTION

Parameter Argument

Name

Explanation

Unfortunately, this method of building the visu-
alization will quickly become unwieldy. As we add
more tools requiring more concepts the graph will
grow in both size and complexity, as each tool might
add new associations between nodes leading to a tan-
gle of lines. It is more effective to consider the ”ar-
gument” to be an abstract concept which connects
the concrete things together; in order to accommo-
date this, I will use the term ”value” to refer to the
concrete thing that C refers to as an ”argument”:

Argument

Local
Variable

Value Name

Explanation

This ”hub and spoke model” allows us to attach
relavant concepts to the argument as a whole. Each
processing tool can search for the concepts it needs by
checking which things are attached to the argument
without worrying about which tools happen to be
processing the argument. When we want to consider
a specific tool, we can modify the graph by trimming
unused nodes and adding arrows that are relevant to
the tool. For example, consider a tool which assesses
the complexity of lines of code in a program. It might
encounter a line like this:

divide(4, c=(a + (b * 2) / 3));

This line would probably be rated as complex due
to the use of assignment as an expression, and possi-
bly due to the number of mathematical operations in
the expression. The tool could simply reprt the line
number but in complicated programs it might also
be useful to specify which argument is the source of
the problem. That is, instead of simply saying ”on
line number x” it could say ”in the value given to
the rhs argument in the call to divide on line num-
ber x”. In order to determine the argument name it
would first look for the argument that it associated
with the source of the complexity. Then it looks for
the name associated with the argument in order to

6

1.1 What is an argument? PARTIAL ROUGH ROUGH DRAFT 1 INTRODUCTION

understand how to communicate effectively with the
human:

Argument

Value Name

This method solves the problem of connections be-
tween nodes growing out of control. As another ex-
ample, in the bash program we would want to in-
clude the concept of option names as well as the the
variable which ultimately receives the value. Addi-
tionally, Bash exposes some of the processing which
is implicitly performed by the compiler in C. This
makes it a useful example to demonstrate how ac-
tions typically taken by the compiler/interpreter can
be mapped onto the visualization. I will focus on the
case statement which determines which given values
should be associated with which environment vari-
ables. First, the case statement examines the short
or long option to determine which argument is being
provided. This is represented by the green arrows in
the below diagram, moving from the option to the
argument. Next, the logic inside the relevant case
determines which value is associated with the argu-
ment. The ”version” argument determines the value
by the mere presence of the name while the ”ignore”
argument determines the value by retrieving a value
provided by the caller. Both methods are represented
by the double-ended purple arrow, representing that
the interpreter retrieves the value then returns to the
argument for further processing. Finally, the value is
placed into an environment variable. This is repre-
sented by the orange arrow, moving from the argu-
ment to the environment variable and ”carrying” the
value with it.

Argument

Environment
Variable

Value
Short
Option

Long
Option

The Rust program produces a more complex graph
due to the presence of the pattern. The compiler pro-
cesses the pattern by looking at the data provided in
a structured manner; it knows that a specific local
variable should be initialized with a subset of the
bits provided by the value. These subsets are not
associated with the argument. Instad, they are as-
sociated with a data type which is associated with
the argument. Where the Bash graph was relatively
simple, with all nodes other than the Argument node
containing exactly one connection to the Argument
node, the Rust graph contains a subgraph attached
to the Argument node.

7

1.2 Practical Applications PARTIAL ROUGH ROUGH DRAFT 1 INTRODUCTION

Argument

Local
Variable

(h)

Local
Variable

(v)

Type
(Point)

Member
(x)

Member
(y)

Value

When the Rust compiler encounters a call to this
function it first retrieves the value from the calling
site. This is represented by the green arrow in the be-
low diagram, moving from the value to the argument.
Next, it looks at the members of the Point structure
in order to determine which subsets of bytes are se-
mantically relevant. This is shown in the double-
ended purple arrows which represent the compiler
performing this lookup and returning to the argu-
ment with this information in hand. Finally, it as-
sociates the relevant subsets with the relevant local
variables as shown by the orange arrows moving from
the argument to the local variables.

Argument

Local
Variable

(h)

Local
Variable

(v)

Type
(Point)

Member
(x)

Member
(y)

Value

Visualizing arguments in this manner leads me to
define an argument as an abstract concept which
emerges from the way that processors (both com-
puter and human) associate concrete things. This
paper will explore the implications of this definiton
by describing the common and unique features as-
sociated with function arguments across several lan-
guages. Additionally, it will present a mechanism im-
plemented in GNU Guile which frees programmers
to create arbitrary associations when declaring ar-
guments. This will generalize the features provided
by various languages, allowing programmers to use
the set of features that make sense given the context
they are working in without needing to change the
language that they are programming in.

1.2 Practical Applications

While the theoretical problems with the term ”ar-
gument” compel me to investigate this phenomenon,
some people might ask whether this actually makes
a difference to people who are working on comput-
ers to achieve practical ends. A good question! As
you might have guessed from the presence of this
paragraph, this does have implications for practical
work. My initial intuition that this is practically use-
ful comes from the ubiquity of function calls in all
programs across different programming paradigms.
Even in object-oriented programming, a significant

8

1.3 Reproducibility and TransparencyPARTIAL ROUGH ROUGH DRAFT 1 INTRODUCTION

portion of lines of code consist of function calls. Any
improvement to the function call interface will have
an outsized effect on developers due to the sheer vol-
ume of function calls we have to deal with. Addition-
ally, my intuition is backed by observing the industry,
including which technologies gain and maintain pop-
ularity as well as the way people interact with them.
Consider the way that bash commonly processes

arguments. It is often the case that a caller can sup-
ply different values for the same argument in the same
call, with the values that are syntactically later over-
riding the was that are syntactically earlier. When
working on a command line this can be useful. If the
caller wants to re-run a command but change one
argument they do not need to navigate through the
invocation and edit the correct spot; instead, they
can add a new value onto the end of the call to get
the desired behavior. In an interactive setting where
the mental flow of the caller is of the utmost im-
portance this feature is useful. However, it would
be considered bad form to do this inside of a shell
script. While Bash technically allows this to hap-
pen, as it is a prompt-first language, other popular
languages such as Python which is a script-first lan-
guage disallow this behavior. There is no ”right an-
swer” as to whether or not the language should allow
this: it is a question of context. This paper will define
semnatics like this as metadata associated with argu-
ments: metadata which can be interpreted differently
or changed completely by tools specialized for specific
contexts (for example, an interpreter could behave
differently if it is given a script on the command-line
compared to when it is running an interactive ses-
sion).
The contextual differences extend to social settings

as well. For example, as we will see in the section on
Python it is possible for an author to specify that
some values cannot be given by name (by default,
callers may choose whether to pass values by posi-
tion or name freely). One of the justifications given
for this is that it simply does not make sense to use
names for some functions in any context. The ex-
ample given is a casting funciton with the signature
as my type(x). Here, they argue, it will never make
sense to use the name x because it does not provide
any meaning. However, a teacher in a Programming

101 class might decide that they want to name all val-
ues in their code examples and assignments, so that
the code is clearer for people who are learning to pro-
gram for the first time. While they could omit the
name for some simple functions such as as my type

this adds conceptual complication to the material:
now students must switch between processing posi-
tional values and named values on a case-by-case ba-
sis, or else completely abandon named values. By
specifying these restrictions through accessible meta-
data, the teacher could simply remove this restriction
for the purpose of their class without disturbing the
upstream project.

1.3 Reproducibility and Trans-
parency

The source code used in example snippets can
be found in the online git repository located
at http://git.sr.ht/~skyvine/comparative-function-
arguments. The repository includes files appropriate
for use with GNU Guix to reproduce the software en-
vironment I used while creating this paper. It pins to
a specific revision of the main Guix channel so that
updates do not interfere with reproducibility. The
Makefile within the ”examples” directory launches a
pure shell3 for the user so that environmental factors
do not interfere with reproducibility.

The git repository also contains the bibtex file used
to generate references in this paper. This source file
contains additional information which is not present
in the output, such as the SHA256 of referenced tar-
balls and the commit hash of source repositories. 4

1.4 Clarifying Terminology

As mentioned above, this paper defines the term ”ar-
gument” to refer to a set of associations between
concrete code objects, such as values and variables.

3Here, ”pure” means that enviornment conditions such as
variables are unset so that the shell does not use any artifacts
from the base operating system by mistake.

4I intend to incorporate this information into the references
in the final version of this paper, but I have not used Latex
before so I will need to learn how to do that.

9

1.5 Structure of Paper PARTIAL ROUGH ROUGH DRAFT 1 INTRODUCTION

Some languages provide similar features under differ-
ent names and sometimes those names do not align
with the vocabulary used by this paper. For example,
different communities use different terms to refer to
the values that shell functions interpret as implying
a value. A shell function might recognize a value ”-
-verbose” to mean that a variable named ”verbose”
should have the value ”true”. I have heard this mech-
anism variously referred to as a flag, a switch, or an
option. This paper refers to this mechanism as an
”implicit value” because the caller uses a name as-
sociated with the argument to imply a value which
does not appear explicitly. A complete least of terms
which describe a feature provided by more than one
language follows:

Positional Value (common name: N/A): These
values are associated with arguments based on the
index of the value in the list of all positional values.

Default Value (common name: Optional Argu-
ment): A value that an author associates with an
argument for use when the caller declines to supply
a value.

Named Value (common name: Keyword Argu-
ment, Option Argument 5): These values are associ-
ated with an argument based on a name which the
caller attaches to the value. The argument may be
associated with several synonymous names.

Implicit Value (common names: Switch, Flag,
Option): An argument has an implicit value if the
caller can specify a name associated with the ar-
gument but omit the value. For example, many
CLI tools have a ”--verbose” flag which increases the
amount of output produced. An argument with an
implicit value may also have antonyms, which invert
the semantics of the primary name. For example,
some CLI tools also have a ”--quiet” option which
disables verbose output and possible disables some
non-verbose output.

Typed Value (common name: N/A): Some lan-
guages allow or require associating a type with an

5The term ”option argument” is not to be confused with
the term ”optional argument”. The former is used by shell
users to refer to an argument that come after an option (such
as ”--ignore” ”foo” in the previous example) while an optional
argument is a term used by scripters and system programmers
to refer to an argument associated with a default value.

argument, in which case the value provided by the
caller must be compatible with that type.

Destructuring (common names: Pattern, Un-
packing): Some languages provide a mechanism to
break a composite structure into its component parts.
In some cases this functionality is specified by the au-
thor, in others by the caller. In both cases the caller
provides a value of a specific type and different parts
of that value (for example, different elements in a list
or different members of a struct) are bound to differ-
ent local variables in the body of the function. The
difference is whether the author decides how the value
is destructured (as in the case of Rust’s patterns) or
the caller does (as in the case of Python’s argument
unpacking). It is theoretically possible for a language
to provide both of these variants simultaneously.

Variadic Function (common name: N/A): A
function which can accept an arbitrary number of
values. Variadic functions are distinct from argu-
ments with default values because with default val-
ues the author controls the range of acceptable ar-
gument counts and each value provided by the caller
is bound to a different local variable. With variadic
functions, the caller can pass in an arbitrarily large
number of arguments (physical limitations notwith-
standing) and the values are typically aggregated into
a container; the variable bound to this container is
the variadic variable. Variadic values are values
which are associated with this feature. For example,
a variadic function may require one positional value
at the beginning of the value list. The first value is
not a variadic value but all other values are.

1.5 Structure of Paper

The remainder of this paper will be divided into 3
parts: Description, Analysis, and Implementation.
The purpose of these parts is to first understand what
the current state of the craft is, then assess the advan-
tages and disadvantages of different approaches, and
finally create a framework that allows programmers
to make context-aware decisions in an interoperable
manner. The description section simply explains the
way that a sample of programming languages pro-
cess function arguments. The analysis section com-
pares these approaches to each other and comments

10

PARTIAL ROUGH ROUGH DRAFT 2 OVERVIEW

on the appropriateness of each approach for different
contexts. The implementation section describes how
the framework was developed and how it operates in
practice.

Part I

Description

2 Overview

This part is dedicated to describing the features of
various languages that are sampled by this paper,
using the terms defined by this paper. Each of these
sections will start with a summary of the features
provided by the language. Next, it will explain the
background knowledge necessary in order to under-
stand the feature descriptions. This explanation will
include an example of a ”simple function and call”
which serves two purposes. First, it provides the
reader with a concrete example of what will be de-
scribed in the context of this language. For example,
the description in Python will focus on the behav-
ior of the interpreter and the bytecode emitted by
the compiler. Second, it provides a point of com-
parison when describing features. In Python, the
description of destructuring primarily describes the
CALL FUNCTION EX instruction, with some description
of list-building instructions towards the end, rather
than describing every single instruction that is emit-
ted. This keeps each section shorter because they
do not have to explain the baseline they are being
compared to; the sections are not self-contained, but
they all have exactly one dependency and the depen-
dency plus the section are self-contained. This makes
it easier for a reader to focus only on the features that
are relevant to them, if they so choose. Finally, each
of the features provided by the language will be de-
scribed.

Each feature description will start either with a
statement that the feature is not provided or a state-
ment of how the feature is provided. For example,
in Python positional parameters are the ”default be-
havior”. Tutorials (including the official tutorial con-
tained in the repository) commonly introduce func-
tions by using positional parameters and introduce
”keyword arguments” as a separate feature at a later
point. Therefore, the Python section about posi-
tional values starts with ”provided by default” while
the section about named values starts with ”provided

11

PARTIAL ROUGH ROUGH DRAFT 3 PYTHON

through keyword arguments”. This helps the reader
understand the feature’s relationship to the language
and clarifies what terminology will be useful if they
are reading language documentation or performing
an internet search. After this statement, any dis-
tinctive qualities of the feature as provided by the
language will be noted.
Finally, there will be 3 subsections: Syntax, Im-

plementation, and Historical Record. All 3 of these
sections inform the implementation of the mechanism
and perform a service for the reader 6.
The syntax section explains what the source code

looks like when the feature is used. This helps read-
ers who are unfamiliar with the language in question
understand the code snippets in the following subsec-
tions.
The implementation section explains the language

behavior which causes the feature to be provided.
This helps clarify the ”concrete things” that the ar-
gument is associating.
The historical record section discusses, where pos-

sible, the motivation for the feature and lessons
learned from implementation and community re-
sponse. This gives the reader context about the en-
vironment the feature exists in, deepening their un-
derstanding.
The final section synthesizes the information from

the descriptions. When different communities have
similar concerns it will merge these concerns into a
single description. When the concerns are distinct
it will clarify the distinction. It will also look for
opportunities to apply solutions created by one com-
munity to a concern raised by another. Finally, it
will provide a compact table listing all concerns. The
mechanism will either address each of these concerns
or provide justifications for leaving specific concerns
unaddressed.

6It should go without saying that the author is also a reader,
albeit a particularly invested one. =)

3 Python

Python provides the following features:

• Positional Value

– Callers typically decide between naming or
positioning values but authors can restrict
this decision.

– Positional values must precede named val-
ues.

• Default Value

• Named Value

• Typed Value

• Caller Destructuring

– Restricted to iterables and dictionaries.

• Variadic Functions

– One or two variadic variables will be bound
to a list for positional values and/or a dic-
tionary for named values.

Python used to provide author destructuring for
tuples, but this was removed in version 3.0.

3.1 Background

Python has a compiler which produces bytecode
[4, internals/compiler.rs section ”Abstract”], and an
interpreter which executes the bytecode [4, inter-
nals/interpreter.rst section ”Introduction”]. Argu-
ment and return values are given using a stack man-
aged by the interpreter; instructions may modify or
move these values, even if this is not the primary
purpose of the instruction [4, internals/interpreter.rst
section ”The Evaluation Stack”].

There are 2 families of instructions that are used
throughout the examples in this section. The LOAD

family puts values on the stack from different loca-
tions depending on the instruction. The CALL family
initiates a function call after the stack has been pre-
pared. There are also example-specific instructions

12

3.2 Simple Function and Call PARTIAL ROUGH ROUGH DRAFT 3 PYTHON

which will be explained alongside the relevant exam-
ple.

Note: This section omits bookkeeping instructions
that are not topically relevant. For example, when
calling a non-method function (one which is not asso-
ciated with an object instance), the interpreter pushes
NULL onto the stack before pushing the function. This
instruction, and similarly uninteresting instructions,
are omitted for brevity.

3.1.1 LOAD family

Instructions prefixed with LOAD retrieve a value from
some location (depending on the instruction) and put
it onto the stack. Each instruction recieves an inte-
ger which represents an index into a C-level array.
Which array is referenced depends on the instruc-
tion. When the array contains variable names, the
instruction also retrieves the value associated with
that name. The below table explains the contents of
the array that each instruction references.

LOAD CONST Constant values which appear liter-
ally or implicitly in source code [3,
Doc/library/dis.rst lines 964-966].

LOAD FAST Names of local variables which are
guaranteed to be initialized. [3,
Doc/library/dis.rst lines 1253-1259,
Lib/inspect.py line 514]

LOAD NAME Names of non-local variables. If
a local variable exists with the
same name as a non-local variable
then the value bound to the lo-
cal variable will be returned. [3,
Doc/library/dis.rst lines 969-972,
Lib/inspect.py line 511].

3.1.2 CALL Family

These instructions tell the interpreter to call a func-
tion. This paper views this family as rooted in the
plain CALL instruction, with all others being variants
on this core instruction. When it needs to reference
a behavior which occurs when a function is called,
it examines only the plain CALL instruction and as-
sumes that other instructions behave similarly unless
the purpose of the variant is to change that specific

behavior.
CALL Receives an integer indicating the num-

ber of argument values provided by the
caller. The stack will contain the
function to call followed by the argu-
ment values in separate stack locations.
[3, Doc/library/dis.rst lines 1398-1410,
Python/ceval.c lines 1314-1536].

3.2 Simple Function and Call

def add_values(a, b):

return a + b

add_values(1000, 1001)

The bytecode generated for the call to add values

performs 3 tasks. First, it pushes the function onto
the stack. Next, it pushes literal values which will
become associated with arguments. Finally, it calls
the function.

LOAD_NAME 0 (add_values)

LOAD_CONST 1 (1000)

LOAD_CONST 2 (1001)

CALL 2

The bytecode generated for the definition is sim-
ilar. It uses LOAD FAST (instead of LOAD NAME) to
refer to the variables associated with arguments and
BINARY OP (instead of CALL) to use the built-in + op-
erator.

LOAD_FAST 0 (a)

LOAD_FAST 1 (b)

BINARY_OP 0 (+)

3.3 Positional Value

Provided by default. Generally, callers can choose
whether to provide values by name or position when
they make the call. All positional values must pre-
cede all named values [6, reference/expressions.html
section 6.3.4 ”Calls”]. Function authors can specify
that some arguments with only receive their value by
position. These are referred to as ”positional-only
arguments”.

13

3.3 Positional Value PARTIAL ROUGH ROUGH DRAFT 3 PYTHON

3.3.1 Syntax & Semantics

Callers specify positional values by providing a
comma-separated list of values. Function authors
specify positional-only arguments by listing a literal
/ after the final positional-only argument [6, ref-
erence/compound stmts.html section 8.7 ”Function
Definitions”]:

def add_values_mixed(position, /, either):

return position + either

valid

add_values_mixed(1000, 1001)

add_values_mixed(1000, b=1001)

invalid: the value for argument

"position" cannot be given by name

add_values_mixed(position=1000, \

either=1001)

3.3.2 Implementation

The bytecode for function definitions is iden-
tical to the simple definition regardless of the
presence of positional-only arguments. The
restriction is enforced within the CALL in-
struction. In particular, the helper function
positional only passed as keyword uses the
co posonlyargcount and co localsplusnames

members of the code object. These variables
track the number of positional-only arguments [3,
Doc/library/inspect.rst lines 180-181] and the names
of all arguments [3, Include/cpython/code.h line
155] respectively. If any names of positional-only
arguments appear as keyword arguments then the
helper raises an error. [3, Python/ceval.c lines
1182-1244]. Note that the helper is only called if
the function does not include a variadic variable for
named values [3, Python/ceval.c lines 1417-1431].
The bytecode for positional values is identical to

the bytecode for the simple call. Python stores
the values of local variables in the C-level ar-
ray ‘localsplus‘. The CALL instruction copies posi-
tional arguments from the stack into this array [3,
Python/ceval.c lines 1341-1353].

3.3.3 Historical Record

Positional values have always been available in
Python and requires no special syntax to use.7

PEP 570 introduced positional-only arguments [5,
peps/pep-0570.rst]. It gives several justifications for
the change, most of which are concerned with main-
taining a healthy ecosystem. There are two relevant
8 ecosystem harms the PEP is concerned with: inap-
propriate use of value names by callers and increased
maintenance burden for library authors.

Inappropriate use of value names includes using
non-meaningful names, such as a math function that
takes one argument (the sqrt function takes one ar-
gument named x). It also includes providing values
in an illogical order, such as calling the range func-
tion and supplying the stop value before the start

value.

The increased maintenance burden occurs because
all argument names are automatically and irrevoca-
bly added to the API surface of all libraries. It could
be the case that a library author wants to implement
a change which should be non-breaking in principle,
but prompts a variable name change for clarity. This
variable name change transforms the overall change
into a breaking change.

The PEP is also concerned with functions that in-
clude a variadic variable for named parameters. For
these functions, any non-variadic variables restrict
the domain of the variadic variable, as their names
will be associated with the distinct variable rather
than the variadic one.

Finally, the PEP notes the curious case of the
range function, which the PEP describes as accept-
ing ”an optional parameter to the left of its required
parameter.” In particular, if the range function only
receives a single argument it is interpreted as the end

7Unfortunately, positional values are assumed to be the de-
fault method of passing arguments by most programmers, in-
cluding language authors, so there is no good citation for this
assertion.

8There are also several concerns mentioned which are spe-
cific to Python and/or its implementation. For example, it
references PEP 399 which requires that pure Python code and
C extensions have the same expressive power. While impor-
tant to the Python community, these concerns are not relevant
to this paper.

14

3.4 Default Value PARTIAL ROUGH ROUGH DRAFT 3 PYTHON

of the range, but if it receives 2 arguments then the
first is interpreted as the start while the second is in-
terpreted as the end. This concern does not appear
to be addressed by PEP 570 9.

3.4 Default Value

Provided by default argument values.

3.4.1 Syntax & Semantics

Function authors can define a default value by adding
a literal = after the name of an argument, then the
value [6, reference/compound stmts.html section 8.7
”Function Definitions”].

def add_values(mandatory, optional=2000):

return mandatory + optional

valid

add_values(1000)

add_values(1000, 1001)

invalid: the first argument is not

associated with a default value

add_values()

3.4.2 Implementation

Default values do not impact the bytecode generated
for the definition or the call: they are both identical
to the simple call. Instead, the CALL instruction re-
trieves default values from the code object and uses
them when necessary [3, Python/ceval.c lines 1314-
1536, trace call TO initialize locals].

3.4.3 Historical Record

Default values were added in version 1.0.2 [3,
Misc/HISTORY lines 32809-32811]. There is addi-
tionally a note that default values ”would now be
quite sensible” in the version 0.9.4 release notes. This

9At least, I do not see anything that addresses it when
I read the PEP and the implementation of range still in-
spects the number of provided arguments manually [3, Ob-
jects/rangeobject.c lines 81-120].

version changed argument processing so that func-
tions receive all arguments as separate values, rather
than as a single tuple [3, Misc/HISTORY lines 34550-
34639].

PEP 671 proposes adding a feature which would al-
low function authors to provide an expression which
will produce a default value at call time (”late eval-
uation”) [5, peps/pep-0671.rst]. Currently, default
values must be static/constant values which are de-
termined when the function is defined. The mailing
list discussion includes several disagreements, includ-
ing whether or not it is appropriate for a function
signature to contain un-inspectable objects and tech-
nical difficulties about scoping rules for late evaluated
values. The proposal is still in the ”draft” state, so
it might be added in the future (possibly after trivial
or significant changes to the proposal), but there has
been no activity on the mailing list since 2021. [9]

3.5 Named Value

Provided through keyword arguments. Generally,
callers can choose whether to provide values by name
or position when they make the call. All named
values must proceed all positional values [6, refer-
ence/expressions.html section 6.3.4 ”Calls”]. Func-
tion authors can specify that some arguments will
only receive their value by name. These are referred
to as ”keyword-only arguments”.

3.5.1 Syntax & Semantics

Callers provide named values by writing first a sym-
bolic name, then a literal =, then the value. [6, ref-
erence/expressions.html section 6.3.4 ”Calls”]. Func-
tion authors specify keyword-only arguments by list-
ing a literal * before the first keyword-only argu-
ment. [6, reference/compound stmts.html section 8.7
”Function Definitions”].

def add_values_mixed(either, *, named):

return either + named

valid

add_values_mixed(named=1001, either=1000)

15

3.5 Named Value PARTIAL ROUGH ROUGH DRAFT 3 PYTHON

add_values_mixed(1000, named=1001)

invalid: the value for argument "named"

must be given by name

some_function(1000, 1001)

invalid: named values cannot appear

before positional values

some_function(named=1001, 1000)

3.5.2 Implementation

The bytecode for function definitions is iden-
tical regardless of the presence of keyword-
only arguments. The restriction is enforced
within the CALL instruction. In particular,
the helper function initialize locals checks
that the number of positional arguments is
not more than expected [6, Python/ceval.c lines
1458-1462, trace call TO initialize locals], by check-
ing the co argcount member which tracks the
number of arguments which may be positional
[3, Doc/library/inspect.rst lines 146-149]. [3,
Python/assemble.c line 556].
Bytecode for calls which use named values differ

significantly from the simple call. For example, con-
sider this code:

def add_values(a, b):

return a + b

add_values(b=1001, a=1000)

add_values(1000, b=1001)

The bytecode for the first call differs from the sim-
ple call by adding the KW NAMES instruction prior to
the CALL instruction:

LOAD_NAME 1 (add_values)

LOAD_CONST 6 (1001)

LOAD_CONST 5 (1000)

KW_NAMES 8 ((’b’, ’a’))

CALL 2

KW NAMESmarks the given constant, in this case the
tuple (’b’, ’a’), as a set of argument names to be

used by CALL [3, Python/bytecodes.c lines 2601-2605,
2644, 2869–2692, 2706–2709]. Then, the CALL in-
struction determines which values belong to which ar-
guments by corresponding their respective positions
on the stack and in the tuple. [3, Python/ceval.c lines
1383-1384].

The process is similar when some values are pro-
vided by position and others by name. The second
call above does not have any additional instructions
to handle this case:

LOAD_NAME 2 (add_values_mixed)

LOAD_CONST 5 (1000)

LOAD_CONST 6 (1001)

KW_NAMES 12 ((’named’,))

CALL 2

The CALL instruction infers which value is named
based on the restriction that positional values must
precede named values [3, Python/ceval.c lines 1383-
1384].

3.5.3 Historical Record

Named values were first introduced in Python 1.3
[2, Doc/tut.tex lines 3540-3626]. The feature was
based on the similar feature provided by Modula-
3 [2, Doc/tut.tex lines 3584-3586]. While keyword-
only arguments (discussed later in this section) were
added afterwards, the core syntax and semantics of
keyword-only arguments have remained unchanged.

PEP 3102 introduced keyword-only arguments. It
provides a single justification for the change: variadic
functions cannot make use of default values. The
PEP gives the following example:

def sortwords(*words, case_sense=False):

pass

If the value associated with case sense can be pro-
vided positionally then it must be provided in every
call even if the caller wants the default value of False
10.

10Unless the caller wants to sort the empty list. =)

16

3.6 Implicit Value PARTIAL ROUGH ROUGH DRAFT 3 PYTHON

3.6 Implicit Value

This feature is not provided by Python.

3.7 Typed Value

Provided through type hinting. The Python compiler
and interpreter do not change their behavior based
on type hints. However, they do guarantee that the
hints will be available to external tools and provide
supporting infrastructure to help the tools work cor-
rectly. Both static analyzers and runtime checkers
can make use of annotations.

3.7.1 Syntax & Semantics

Type hints are specified using function annotations,
as defined in PEP 3107. This means that function
authors add a colon and type name after the variable
name associated with the argument:

def typed_argument(x: str):

pass

3.7.2 Implementation

Annotations are stored as metadata in the Python
object which represents the function. Libraries can
access them through the annotations property,
which contains a dictionary [5, peps/pep-3107.rst,
”Accessing Function Annotations”].

3.7.3 Historical Record

The foundations for type hinting were added in PEP
3102, which defines the syntax for function annota-
tions [5, peps/pep-3102.rst]. The Python developers
then waited for external community-driven tools to
experiment with different type-checking approaches.
Eventually, they took lessons learned from the com-
munity and created a set of recommendations in
PEPs 482, 483, and 484 [5, peps/pep-0484.rst, ”Ab-
stract”]. Much of their content addresses type theory
issues, such as generics, variance, and special types
like Any. Since this initial introduction there have
been a number of PEPs which further clarify best
practices or provide syntactic improvements to type

specifications. However, the core mechanism that
this paper is concerned with - associating a type with
an argument, regardless of how that type is specified
- remains unchanged.

3.8 Caller Destructing

Provided through argument unpacking. Caller de-
structuring is only available for iterables and map-
pings.

3.8.1 Syntax & Semantics

This feature allows a caller to prefix one or more iter-
ables with * in order to translate their contents into
a set of positional values, and/or prefix one or more
mappings with ** to translate their contents into a
set of named values. For mappings, keys must strings
naming an argument. [6, reference/expressions.html
section 6.3.4 ”Calls”]

def add_values(a, b, c):

return a + b + c

all of the below calls are equivalent

to this:

add_values(1000, 1001, 1002)

destructure an iterable into positional

values

l = [1000, 1001, 1002]

add_values(*l)

destructure multiple iterables into

positional values

first_part = [1000]

second_part = [1001, 1002]

add_values(*first_part, *second_part)

destructure a mapping into named

values

d = { ’a’: 1000, ’b’: 1001, ’c’: 1002 }

add_values(**d)

destructure multiple mappings into

named values

17

3.8 Caller Destructing PARTIAL ROUGH ROUGH DRAFT 3 PYTHON

first_part = { ’b’: 1001 }

second_part = { ’a’: 1000, ’c’: 1002 }

add_values(**first_part, **second_part)

3.8.2 Implementation

The difference between the simple call and a call
which includes destructuring is best explained by
starting with the final instruction. While the sim-
ple call uses the plain CALL instruction a destruc-
turing call uses the CALL FUNCTION EX instruction.
CALL FUNCTION EX receives either 0 or 1 which tells
it whether or not there is a mapping to destructure
[3, Doc/library/dis.rst lines 1398-1410].

When it receives 1, there is a mapping to destruc-
ture which will be on the top of the stack. While
the caller can use any mapping (and any number of
mappings), CALL FUNCTION EX will always see a sin-
gle dictionary when it executes (the process which
ensures this is discussed in more detail later in this
section). The dictionary is turned into a set of key-
word arguments by interpreting the keys as names
identifying arguments. [3, Objects/call.c lines 1029-
1053]

The next item on the stack is an iterable to de-
structure. In this case, CALL FUNCTION EX might see
any iterable on the stack. If the iterable is not a tuple
it will convert it into a tuple [3, Python/bytecodes.c
lines 3198-3207]. The elements of this tuple will be
used as positional values. [3, Python/bytecodes.c line
3219].

When CALL FUNCTION EX receives 0 the process is
similar, except that the top element of the stack is
an iterable and there is no mapping.

The compiler ensures that CALL FUNCTION EX only
receives dictionaries (rather than the arbitrary map-
ping object provided by the caller) with two instruc-
tions. First, it issues a BUILD MAP instruction to place
a new dictionary on the stack [3, Doc/library/dis.rst
lines 1015-1023]. Then it adds the keys and values of
each mapping object into this dictionary by repeat-
edly calling the DICT MERGE instruction. For exam-
ple, this code:

add_values(*d)

Compiles to this bytecode (note that BUILD MAP

receives the value 0 to indicate that it is building an
empty dictionary):

LOAD_NAME 0 (add_values)

LOAD_CONST 13 (())

BUILD_MAP 0

LOAD_NAME 3 (d)

DICT_MERGE 1

CALL_FUNCTON_EX 1

When named values are provided separately from
the destructured values, the freshly created dictio-
nary is prepopulated with those values. For example,
this code:

d = { ’b’: 1001, ’c’: 1002 }

add_values(a=1000, **d)

Compiles to this bytecode (note that in this case,
BUILD MAP receives the value 1 to indicate that there
is one key-value pair on the stack):

LOAD_NAME 1 (add_values)

LOAD_CONST 17 (())

LOAD_CONST 11 (’a’)

LOAD_CONST 3 (1000)

BUILD_MAP 1

LOAD_NAME 4 (d)

DICT_MERGE 1

CALL_FUNCTION_EX 1

When the caller provides multiple destructured it-
erables, or provides literal positional values in addi-
tion to one or more destructured iterables, the com-
piler issues instructions to merge them into a list,
then converts that list into a tuple. For example,
this code:

t0 = (1001,)

t1 = (1002,)

add_values(1000, *t0, *t1)

Compiles to this bytecode:

LOAD_NAME 1 (add_values)

LOAD_CONST 3 (1000)

18

3.9 Author Destructuring PARTIAL ROUGH ROUGH DRAFT 3 PYTHON

BUILD_LIST 1

LOAD_NAME 4 (t0)

LIST_EXTEND 1

LOAD_NAME 5 (t1)

LIST_EXTEND 1

CALL_INTRINSIC_1 6 (INTRINSIC_LIST_TO_TUPLE)

CALL_FUNCTION_EX 0

If the caller provides only a single iterable to de-
structure, and no literal positional values, this it-
erable is placed onto the stack without modifica-
tion and the tuple creation logic contained within
CALL FUNCTION EX itself is triggered.

3.8.3 Historical Record

When argument unpacking was first introduced in
version 1.6 [3, Misc/HISTORY lines 26740-26743],
it only allowed callers to unpack a single iter-
able and/or a single mapping. For example,
the call add values(*first part, *second part)

would have been illegal. PEP 448 expanded argu-
ment unpacking so that multiple values can be de-
structured in the same call [5, peps/pep-0448.rst].
The rationale given for this change was enhanced
readability, as previously callers would either need
to build iterables/dictionaries separately or destruc-
ture them manually, adding additional lines of code
which are semantically sparse.

3.9 Author Destructuring

While python does not currently support autho-
rial destructuring, it did so prior to version 3.0 [5,
peps/pep-3113.rst]. It allowed authors to declare
that arguments should receive tuples whose values
would be bound to separate local variables:

def distance((x1, y1), (x2, y2)):

pass

This function would require that callers pass in 2
values which are both tuples containing 2 elements.
The values from the first tuple would be bound to
local variables x1 and y1, while the values from the
second would be bound to x2 and y2.

The functionality was removed through PEP 3113.
The rationale includes multiple implementation is-
sues which are important to the Python community
but not relevant to this paper.

3.10 Variadic Function

Provided by arbitrary argument lists and dictionar-
ies. Positional values are collected by the former
while named values are collected by the latter.

3.10.1 Syntax & Semantics

Function authors specify variadic-ness by specifying
the name for one or two variadic variables. The name
for the variadic list must be prefixied by a * while the
name for the variadic dictionary must be preceeded
by a ** [6, reference/compound stmts.html section
8.7 ”Function Definitions”].

from itertools import chain

def add_values(*pos_vals, **named_vals):

return sum(chain(pos_vals, \

named_vals.values()))

All of these values appear in the

pos_values list

add_values(1000, 1001, 1002, 1003)

All of these values appear in the

named_values dictionary

add_values(named_val0=1000,

named_val1=1001,

named_val2=1002,

named_val3=1003)

The values 1002 and 1003 appear in the

pos_vals list while the names and

values named_arg0=1000 and

named_arg1=1001 appear in the

named_vals dictionary

add_all_values(1002,

1003,

named_val0=1000,

19

PARTIAL ROUGH ROUGH DRAFT 4 GUILE

named_val1=1001)

3.10.2 Implementation

The interpreter tracks which positional values are
also variadic values by checking the co argcount

variable associated with the function’s code ob-
ject. Remaining positional arguments are moved
into the appropriate variadic variable, if it exists
[3, Python/ceval.c lines 1355-1376]. It distinguishes
variadic named values from non-variadic named val-
ues by checking if the name is expected; the inter-
preter already has to keep track of this information
because an unrecognized value name is considered
an error for non-variadic functions [3, Python/ceval.c
lines 1378-1455].

3.10.3 Historical Record

PEP 468 updated the variadic variable for named val-
ues such that the author can retrieve the syntactic
order in which the values were given. The rationale
given for this change is that some users are develop-
ing APIs where order matters, such as serialization.
[5, peps/pep-0468.rst]

4 Guile

Guile provides the following features:

• Destructuring

• Named Value

• Default Values

• Positional Value

• Typed Values

• Variadic Functions

All code samples were compiled with the partial-
evaluation optimization turned off. This is because
partial evaluation frequently removes the function
call itself as the return values can be calculated at
compile-time.

Additionally, bytecode listings include comments
which help explain what the instruction is doing. The
meaning of the comment depends on the instruction.
For example, the make-immediate bytecode instruc-
tion copies a literal static value onto the stack. It
contains a comment which indicates the value loaded:

(make-immediate 4 4002) ;; 1000

While the call-scm<-scm-scm, which is pro-
nounced ”Call scheme from scheme scheme” to sig-
nify that it is calling a built-in function that returns
a scheme value and accepts two scheme values as in-
put, includes the name of the built-in function it is
calling:

(call-scm<-scm-scm 8 8 7 111) ;; lookup-bound

Note that the alloc-frame instruction will contain
a comment referring to the number of ”slots” that the
frame has; this refers to the size of the stack after the
instruction finishes executing.

These comments are helpfully added by the Guile
decompiler.

20

4.1 Background PARTIAL ROUGH ROUGH DRAFT 4 GUILE

4.1 Background

Guile implements the Scheme programming lan-
guage, which is a dialect of Lisp. Scheme was orig-
inally described in a 1975 paper for demonstrative
purposes [17, page 1]. Interest in the language led to
a series of revisions to the original description and,
eventually, standardization. These papers are refered
to as ”Revised Reports on Scheme”, abbreviated to
”rNrs” where the N is replaced with a number rep-
resenting the revision count. For example, the most
recently published version of the standard is the 7th
revision of the Scheme programming language so it
is referred to as ”r7rs”.

Guile was originally implemented as an interpreter
which worked with a literal representation of a pro-
gram’s text [15, Section 9.3.1 ”Why a VM?”]. A
virtual machine was added to Guile in the 2.0 re-
lease (2010) [15, Section 9.1.4 ”A Timeline of Se-
lected Guile Releases”] [12, NEWS lines 5068-5071],
and was rewritten for the 2.2 release (2017) [15, Sec-
tion 9.1.4 ”A Timeline of Selected Guile Releases”].
Modern Guile implements a compiler which produces
bytecode, an interpreter which executes bytecode,
and an interpreter which directly executes program
text [12, modules/language/scheme/spec.scm lines
43-45]. This paper will focus on compiled bytecode as
this keeps the analysis consistent with other sections
and is the typical way to execute Guile code11.

Guile bytecode operates as a stack machine with
2 pointers into the stack: the frame pointer and the
stack pointer. [15, Section 9.3.2]. The frame pointer
stores a location near12 the beginning of the frame,
where each frame represents a single function call.
The stack pointer keeps track of the end of the stack,
like a pointer to the end of an array [15, Section
9.3.3]. When instructions take an index, they dif-
fer in whether they take in an index relative to the
stack pointer or the frame pointer [15, Section 9.3.5].
This paper will always reference indexes relative to
the stack pointer for the sake of consistency; this has

11For example, running guile script-name will first compile
the script then run the compiled file rather than running the
script directly.

12It is ”near” the beginning rather than ”at” the beginning
because some metadata is stored before the frame pointer’s
location; this metadata will not be relevant to this paper.

the effect that frames start at a higher index and end
at a lower index. For example, in the simple call the
frame pointer, associated with the beginning of the
stack, is moved to index 5 while the stack pointer, as-
sociated with the end of the stack, is moved to index
2.

Guile produces different kinds of call instructions
based on the call’s location. Code samples in the
repository were intentionally crafted to ensure that
they always produced the plain call instruction; ir-
relevant parts of the code (such as a constant value
placed after the call) are omitted from this paper.

4.1.1 The optargs module

Many of the features described in this paper are pro-
vided through Guile’s optargs module, which was
introduced in version 1.3.2 (1999) [15, Section 9.1.4
”A Timeline of Selected Guile Releases”] [12, NEWS
lines 11451-11525]. At this time, Guile lacked a
virtual machine and the module was implemented
in pure scheme. This implementation operated by
adding a prelude to the function definiton which
searches through the values provided by the caller to
decide which values should be assigned to which vari-
ables [10, ice-9/optargs.scm]. The virtual machine
was added to Guile in version 2.0.0 (2010) [15, Section
9.1.4 ”A Timeline of Selected Guile Releases”] [12,
NEWS lines 5068-5071]. This also entailed a rewrite
of the optargs module which centered the implemen-
tation around the internal <lambda-case> strucure.
This structure contains all the information about the
different kinds of arguments accepted by the function
and facilitates the use of special-purpose VM instruc-
tions for processing arguments efficiently [14, 2009-10
lines 6428-6453]. While the VM has gone through
changes since then, including a complete rewrite in
version 2.2 [15, Section 9.1.4 ”A Timeline of Selected
Guile Releases”], the implementation of the optargs
module has remained stable. The special-purpose
VM instructions have been adapted to handle the
details of VM operation correctly and decrease la-
tency, but the core logic used to process arguments
has proven to be robust.

21

4.2 Simple Function and Call PARTIAL ROUGH ROUGH DRAFT 4 GUILE

4.2 Simple Function and Call

(define (add-values a b)

(+ a b))

(add-values 1000 1001)

The bytecode generated for the function definition
is fairly straightforward.

0 (call-scm<-scm-scm 1 1 0 0) ;; add

1 (reset-frame 1) ;; 1 slot

2 (handle-interrupts)

3 (return-values)

Instruction 0 calls the built-in function add (which
corresponds to the + function) and places the result
into index 0 [12, liguile/vm-engine.c lines 1545-1549].
Instruction 1 resizes the stack so that it con-

tains 1 element - in this case, the return value [12,
libguile/vm-engine.c lines 797-802].
Instruction 2 ensures that Guile properly handles

signals like Ctrl-C (SIGINT) and code instrumen-
tation [15, Section 9.3.7.6 ”Instrumentation Instruc-
tions”, Section 6.22.3 ”Asynchronous Interrupts”]; it
can be safely ignored here and it will not be men-
tioned again.
Finally, the return-values instruction moves the

flow of execution back to the caller. Counterintu-
tively, it does not actually handle moving the return
valuse to specific locations; it only sets the frame
and instruction pointers to the caller’s values [12,
libguile/vm-engine.c lines 530-555].
The bytecode generated for the call to add-values

is more complicated because it is calling a user-
defined function. It needs to load the function and
its arguments 13, then dispatch to the function.

0 (static-ref 7 16324) ;; add-values

1 (call-scm<-scm-scm 8 8 7 111) ;; lookup-bound

2 (scm-ref/immediate 5 8 1)

13The function definition did not have to manage the ar-
guments for the built-in call because built-in calls take val-
ues from arbitrary stack locations which are specified in the
instruction arguments, so the caller-supplied locations were
reusable.

3 (make-immediate 4 4002) ;; 1000

4 (make-immediate 3 4006) ;; 1001

5 (handle-interrupts)

6 (call 3 3)

Instruction 0 loads the literal string "add-values"

into index 7 [12, libguile/vm-engine.c line 2125-2129].
Instruction 1 looks up the value associated

with the name add-values and stores it in in-
dex 8 [12, libguile/vm-engine.c lines 1545-1549,
libguile/intrinsics.c lines 374-376].

The value includes both the procedure itself and
some associated metadata; instruction 2 retrieves
the procedure itself and stores it in index 5 [12,
libguile/vm-engine.c lines 1906-1910].

Instructions 3-4 place the constant values 1000 and
1001 into indices 4 and 3, respectively. At this point
the most relevant portion of the stack looks like this:

Index Value
5 #<procedure add-values>
4 1000
3 1001

Finally, instruction 6 calls the function; internally,
this involves moving the frame pointer to index 5
(where the procedure is stored) and the stack pointer
to index 2 (the new end of the stack, which is smaller
for the callee than for the caller) [12, libguile/vm-
engine.c lines 451-454].

4.3 Caller Destructuring

Provided through the apply function. This allows a
caller to provide a list which is destructured into a
set of positional arguments.

4.3.1 Syntax & Semantics

Destructuring in guile has a simple interface, as
apply is simply a function that takes in a function as
the first value, then any number of arbitrary values,
and requires a possibly empty list as the final value.
For example, all of these are equivalent:

22

4.4 Author Destructuring PARTIAL ROUGH ROUGH DRAFT 4 GUILE

(add-values 3 4)

(apply add-values 3 ’(4))

(apply add-values ’(3 4))

However, this would be an error because the final
value is not a list:

(apply add-values 3 4)

4.3.2 Implementation

apply operates by first collecting all of the positional
arguments into a single list, with the final value as the
tail of the list, and sending them to scm call n [12,
libguile/eval.c lines 585-622, lines 715-729] 14. This
function is responsible for setting up the VM stack
correctly [12, libguile/vm.c lines 1542-1621]. For ex-
ample, these lines save the frame’s metadata and add
the arguments to the correct stack positions:

SCM_FRAME_SET_VIRTUAL_RETURN_ADDRESS (call_fp, vp->ip);

SCM_FRAME_SET_MACHINE_RETURN_ADDRESS (call_fp, 0);

SCM_FRAME_SET_DYNAMIC_LINK (call_fp, return_fp);

SCM_FRAME_LOCAL (call_fp, 0) = proc;

for (i = 0; i < nargs; i++)

SCM_FRAME_LOCAL (call_fp, i + 1) = argv[i];

These tasks are handled by different components
in the simple call. The frame’s metadata is typically
set by the call instruction , while the arguments are
added to the stack by the by separate instructions
such as make-immediate or scm-ref.

14A typical guile programmer (such as myself) who is famil-
iar with the dotted list syntax or the #:rest argument (both
described in the section on variadic functions) might be con-
fused by the C-level API of the apply function. It takes 2
required arguments and a rest argument. The apply func-
tion takes any number of arguments and requires that the fi-
nal argument is a list. Oddly, the body of the function sim-
ply calls cons* on the second required argument and the rest
argument; one might expect that this would cause the user-
provided list to be preserved instead of flattened. However,
when a C-level function is registered with a rest argument in
guile it receives an improper list of arguments, rather than the
proper list provided when #:rest is given to define*. See the
file examples/guile/c-gsubr-rest.scm (and its corresponding
c file) in the paper’s repository for a demonstration. The rea-
son for this discrepency is not clear but the API of scm apply

makes sense now.

4.3.3 Historical Record

The notion of list destructuring with apply was in-
cluded in the original paper defining the lisp program-
ming language [8, pages 189-190]. This original def-
inition took exactly 2 parameters, a function and a
list containing the arguments. r2rs extended this by
allowing the caller to pass any number of values be-
tween the function and the list [16, page 57].

In the original interpreter, Guile simply called
the function after manually unpacking the argu-
ments [13, libguile/eval.c lines 1869-1985]. With
the release of Guile 2.0, which added the virtual
machine [12, NEWS lines 5068-5071], the apply

function delegated to scm call with vm, a dedicated
C-level helper function for calling scheme-level
functions [11, libguile/eval.c lines 782-802]. This
was replaced with the scm call n function as part
of a refactoring which removed explicit references to
the VM from many locations in C code as well as
eliminating VM visibility from scheme code [12, com-
mit 165d9bf3a3bf34b53ed916743c6414f8030320c3
and earlier commits found with git log

libguile/eval.c]. The reason for this change
is not explicitly stated in the commit messages
but is likely related to performance improvements
attributed to a rewrite of the virtual machine in the
Guile 2.2 release notes [12, NEWS lines 1995-2004,
2124–2205].

4.4 Author Destructuring

This feature is not provided by Guile.

4.5 Implicit Value

This feature is not provided by Guile.

4.6 Named Value

Provided through the #:key arguments to optargs

definitions.

4.6.1 Syntax & Semantics

The caller must use the name specified by the author,
which will also be the name used by the local variable

23

4.6 Named Value PARTIAL ROUGH ROUGH DRAFT 4 GUILE

15. When an author mandates a named value they
also implicitly create a default value. Details about
default values are described in the appropriate sec-
tion; for the purpose of named values all we need to
know is that if a caller omits a value then the local
variable will be bound to #:false. For example, an
author of add-values could allow named values like
this:

(define* (add-values #:key a b)

(+ (or a 0) (or b 0)))

This function could be called in any of the follow-
ing ways, with the result shown in the proceeding
comment:

(add-values) ; 0

(add-values #:a 3) ; 3

(add-values #:b 3) ; 3

(add-values #:a 3 #:b 3) ; 6

However, these would not be legal:

(add-values 3)

(add-values 2 #:b 2)

When an author specifies that a value can be
named this also means that it must be named, if it
is provided at all.
Additionally, an author may specify that a caller

can supply arbitrary named values which are not
specified in the function signature (and not bound
to a local variable, unless the function is also vari-
adic). This is done by adding #:allow-other-keys
16 to the function signature. For example, a defini-
tion of add-values with this feature would allow all
of the following calls to be legal, and they would all
produce the value 6.

15The caller uses a keyword to name the value while the
author uses a symbol to name the variable, as normal, but
they both use the same name.

16Ironically, while the optargs module does not support im-
plicit values for user-defined code, #:allow-other-keys is itself
an implicit value.

(define* (add-values #:key a b #:allow-other-keys)

(+ (or a 0) (or b 0)))

(add-values #:a 3 #:b 3)

(add-values #:a 3 #:b 3 #:c 34)

(add-values #:c 34 #:a 3 #:b 3)

(add-values #:a 3 #:b 3 #:multiplier 88)

4.6.2 Implementation

When Guile compiles a procedure it stores the list of
valid argument names next to the SCM object repre-
senting the code [12, libguile/vm-engine.c lines 734,
736, 743–745, libbugile/vm.c lines 1003, 1008–1009].
When a function using named values is defined, the
compiler adds additional instructions as a prelude in
the definition.

0 (bind-kwargs 1 0 1 3 16351)

1 (alloc-frame 3) ;; 3 slots

2 (immediate-tag=? 1 4095 2308) ;; undefined?

3 (jne 2) ;; -> L1

4 (make-immediate 1 14) ;; 3

L1:

5 (immediate-tag=? 0 4095 2308) ;; undefined?

6 (jne 2) ;; -> L2

7 (make-immediate 0 22) ;; 5

L2:

8 (call-scm<-scm-scm 2 1 0 0) ;; add

9 (reset-frame 1) ;; 1 slot

10 (handle-interrupts)

11 (return-values)

Instruction 0, bind-kwargs, performs the bulk of
the work required to process named values at run-
time. First, it initializes all relevant local variables
(eg, ones that have default values or are named) to
the undefined value [12, libguile/vm.c lines 995-998].
Next, it walks through the list of non-positional argu-
ments with the assumption that every even-indexed
item is a keyword naming an argument and binds the
odd-indexed items to the appropriate variables 17 [12,
libguile/vm.c lines 1000-1037].

17Technically, it assumes that alternating value are key-
words, except that it will silently ignore a non-keyword if
#:rest is included in the procedure definition. However, I am

24

4.7 Default Value PARTIAL ROUGH ROUGH DRAFT 4 GUILE

Instruction 1 prepares the stack for the function
call.
Instructions 2-7 ensure that the local variables

which come from named values are initialized prop-
erly; these instructions are actually about default val-
ues, not named values, so they are discussed in the
appropriate section.
Finally, instructions 8-11 are the body of the func-

tion as found in the simple definition.
The bytecode for the call is largely similar to the

simple call, except that it also sends the keywords
as additional argument values to the function (while
they are not considered values within the body of a
define* form, they are values at this lower level):

1 (call-scm<-thread 8 62) ;; current-module

2 (static-ref 7 16324) ;; add-values

3 (call-scm<-scm-scm 8 8 7 111) ;; lookup-bound

4 (scm-ref/immediate 5 8 1)

5 (static-ref 4 16331) ;; #:a

6 (make-immediate 3 34) ;; 8

7 (static-ref 2 16340) ;; #:b

8 (make-immediate 1 38) ;; 9

9 (handle-interrupts)

10 (call 3 5)

4.6.3 Historical Record

Named values were introduced with the orig-
inal implementation of the optargs module
[12, NEWS lines 11451-11525]. In the original
implementation, the let-ok-template helper
function generated a scheme-level let (or let*)
form which initially binds each variable name
to either the default value supplied by the au-
thor or a fresh undefined variable [12, commit
7e01997e88c54216678271de36b1c2088377492d ice-
9/optargs.scm lines 128-135]. The bindfilter

local in the let-keyword-template helper
replaced these initial values with the val-
ues supplied by the caller [12, commit
7e01997e88c54216678271de36b1c2088377492d ice-
9/optargs.scm lines 152-168].

currently focused on named values in isolation of other fea-
tures. #:rest is discussed in the section on variadic functions.

The current implementation is largely the same,
except that it takes advantage of being able to di-
rectly manipulate the VM state from C code in-
stead of using macros to mutate code syntactically.
The maintainers decided to move the implementation
from scheme to C in order to decrease the latency as-
sociated with a function call that uses named values
[14, 2009-10 lines 10053-10056, 14008–14009, 14139–
14141].

One change, which may or may not be considered
a bug fix, has to do with the way that Guile pro-
cesses named values when the function also contains
a variadic variable. Originally, Guile required that
all named values precede all (other) variadic values.
This was changed so that variadic values may be in-
termingled with named values, so long as variadic val-
ues are not keywords (unless #:allow-other-keys is
set, in which case they may be keywords) [12, commit
ff74e44ecba55f50b2c2c84bad2f13bed9489455].

4.7 Default Value

Provided through both #:optional and #:key.
When considering default values, both of these are se-
mantically equivalent. The difference between them
is whether values are passed by position or by name.
This section will exclusively use #:optional because
none of the functions used in the examples are com-
plicated enough to benefit from named values.

4.7.1 Syntax & Semantics

The default value for an argument can either be spec-
ified or unspecified. If it is unspecified it is #false.
Arguments become associated with a default value
by placing them after the #:optional keyword in a
define* form. This verison of add-values demon-
strates use of default values without specification.

(define* (add-values #:optional a b)

(+ (or a 0) (or b 0)))

This function adds the given values, and the body
of the function uses the value 0 if the caller omitted
a vaule.

25

4.7 Default Value PARTIAL ROUGH ROUGH DRAFT 4 GUILE

However, it is idiomatic to specify a default value in
the function signature rather than testing the truthi-
ness of the value. This is done by specifying the ar-
gument with a list instead of a symbol. The first
element is the symbol naming the local variable and
the second element is the default value.

(define* (add-values #:optional (a 0) (b 0))

(+ a b))

This version is semantically equivalent to the first.

4.7.2 Implementation

The bytecode for the function definition differs signif-
icantly. I will start with the bytecode for the function
which includes default values in the signature as this
version is simpler:

0 (bind-optionals 3) ;; 2 args

1 (alloc-frame 3) ;; 3 slots

2 (immediate-tag=? 1 4095 2308) ;; undefined?

3 (jne 2) ;; -> L1

4 (make-immediate 1 2) ;; 0

L1:

5 (immediate-tag=? 0 4095 2308) ;; undefined?

6 (jne 2) ;; -> L2

7 (make-immediate 0 2) ;; 0

L2:

8 (call-scm<-scm-scm 2 1 0 0) ;; add

9 (reset-frame 1) ;; 1 slot

10 (handle-interrupts)

11 (return-values)

Instruction 0, bind-optionals, checks if the caller
omitted any argument values. If so, it fills in the
associated variables with the undefined value [12,
libguile/vm-engine.c lines 3213-3233].
The next 2 sections, instructions 2-4 and 5-7, check

whether or not the local variables associated with op-
tional values are undefined; if so, they are filled with
the default value specified by the author.
Finally, instructions 8-11 are the body of the func-

tion as found in the simple call.
The version which does not specify default values

in the signature is similar, but contains additional
(and repetitious) logic.

0 (bind-optionals 3) ;; 2 argss

1 (alloc-frame 3) ;; 3 slots

2 (immediate-tag=? 1 4095 2308) ;; undefined?

3 (jne 2) ;; -> L1

4 (make-immediate 1 4) ;; #f

L1:

5 (immediate-tag=? 0 4095 2308) ;; undefined?

6 (jne 2) ;; -> L2

7 (make-immediate 0 4) ;; #f

L2:

8 (immediate-tag=? 1 3839 4) ;; false?

9 (jne 2) ;; -> L3

10 (make-immediate 1 2) ;; 0

11 L3:

12 (immediate-tag=? 0 3839 4) ;; false?

13 (jne 2) ;; -> L4

14 (make-immediate 0 2) ;; 0

L4:

15 (call-scm<-scm-scm 2 1 0 0) ;; add

16 (reset-frame 1) ;; 1 slot

17 (handle-interrupts)

18 (return-values)

Instruction 0 is also bind-optionals.
Instructions 2-7 fill in the default value but in this

case the value is #:false rather than 0.
The next two sections check the argument values a

second time and replace the argument value with 0 if
it was false (instructions 8-14) - these represent the
or statements in the source code.

Instruction 15-18 are the body of the function as
found in the simple call.

The bytecode for calling a function using default
values does not differ from the bytecode for the simple
call.

4.7.3 Historical Record

Default values were included in the original optargs
implementation [12, NEWS lines 11451-11525]. The
semantics at that time were nearly identical to the
current semantics. The one notable difference is
that, in the case where the author does not de-
fine a default value and the caller does not sup-
ply one, the variable was not bound to any value.
This was changed as part of merging a branch that

26

4.8 Positional Value PARTIAL ROUGH ROUGH DRAFT 4 GUILE

was mostly concerned with how modules are han-
dled. I was unable to find any record about the
reason why this change was made 18 [12, com-
mit 296ff5e78b8322fe4bf00c5ec1497dc28da776b8] [14,
2001-05 lines 11305-11313]. This was included in the
1.8 release series (2006) [15, Section 9.1.4 ”A Time-
line of Selected Guile Releases”] 19.

4.8 Positional Value

Provided as the default mechanism for mapping val-
ues to arguments.

4.8.1 Syntax & Semantics

The syntax and semantics for both calls and defini-
tions are identical to the simple call.

4.8.2 Implementation

Guile does not explicitly enforce a restriction that val-
ues can only be supplied positionally. This is because,
technically, all values are always supplied position-
ally. When a caller provides named values they are
actually providing pairs of values: keywords as names
and arbitrary values as values. For example, given
this call it is impossible to say whether the caller is
supplying named values or positional values:

(make-dictionary #:first "one"

#:second "two"

#:third "three")

18Marius Vollmer, the developer who authored the commit,
was very kind in responding to an email enquiring about this.
Unfortunately it has been more than 2 decades since the change
was made and it was not notable enough to warrant a place in
permanent memory.

19I infer that it was first added in 1.8 because
commit 296ff5e78b8322fe4bf00c5ec1497dc28da776b8,
which implements the change, is between commit
0f24e75b73b9c0c745971de639a53748a395a1cb, which
bumps the numbers in GUILE-VERSION from 1.7 to
1.9 (guile uses odd numbers for development versions
and even numbers for release versions) and commit
c299f186ff9693fc88859daef037e3d94cc7c0ff, which adds
content to the NEWS file regarding changes new in 1.6
However, I did not find any content in the NEWS file which
discusses the change (including in more recent release notes).

This could be a valid call to a function with named
values:

(define* (make-dictionary #:key first second third)

(let ((result (make-hash-table)))

(hash-set! result #:first first)

(hash-set! result #:second second)

(hash-set! result #:third third)

result))

Or it could be a valid call to a function which takes
6 positional values:

(define* (make-dictionary key0 val0

key1 val1

key2 val2)

(let ((result (make-hash-table)))

(hash-set! result key0 val0)

(hash-set! result key1 val1)

(hash-set! result key2 val2)

result))

From the perspective of this particular caller, it is
impossible to determine which implementation is in
use without inspecting the code 20.

However, it is likely that using named values for a
function which does not accept them will result in an
error. This is because names are themselves values
and are unlikely to be the correct kind of value for
the function. For example, this attempt to use named
values resulted in an error because the local variable
a is bound to the value #:a, which is not a valid input
to +:

(define (add-values a b)

(+ a b))

(add-values #:a 5 #:b 7)

; ice-9/boot-9.scm:1685:16: In procedure raise-exception:

; In procedure +: Wrong type argument in position 1: #:a

20Of course, a caller who wanted to use different keywords
in their dictionary would notice the difference between these
implmentations very quickly!

27

4.9 Typed Value PARTIAL ROUGH ROUGH DRAFT 4 GUILE

4.8.3 Historical Record

The Scheme standard requires that implementations
accept value positionally. This has been true since
the original paper describing lisp [8, pages 185-
186]. The stated motivation is to distinguish between
”functions” and ”forms”. In that paper, a function is
the abstract idea of a formula that can have concrete
numbers applied to it. Traditionally, a form is syntac-
tically identical to a formula, but it is meant to be a
stand-in for whatever value the formula will resolve to
in context. The differentiating syntax is taken from a
previous work which had a similar concern and does
not explicitly justify the postional notation [1, pages
3-7] 21.

While the semantics of positional arguments have
remained the same, the implementation has changed
significantly. In the oldest version of Guile available
through source control, values are given to a function
by collecting them into a list, then dispatching based
on the number of values expected by the function [13,
libguile/eval.c lines 1822-2004]. With the addition
of the VM, values are given by putting them into a
frame managed by the VM (eg, not a C-level frame),
avoiding the need to create a list unless the function
is variadic.

4.9 Typed Value

This feature is provided by defining methods in
the Guile Object-Oriented Programming System
(GOOPS).

21The decision to supply arguments positionally appears to
derive from prior work describing multi-argument functions as
a series of functions which take in one of the values and call
the ”next” function which will receieve the ”next” value (this
is similar to the concept of currying used in some programming
languages). With this model, it is natural to write values posi-
tionally as they must be provided in the correct order to ensure
that each partial function operates correctly. It’s also worth
noting that the examples of functions used in the paper are
relatively simple - they are all inlinable with the prose. In
the face of such simplicity, naming values would be verbose
without much benefit.

4.9.1 Syntax & Semantics

In GOOPS methods are not contained within classes.
Instead, they are simply functions with type specifi-
cations. When an author defines a method, they can
choose to specify a type by providing a two-element
list in place of an argument name [15, Section 8.6
”Methods and Generic Functons”]. The first element
of the list is the argument name and the second ele-
ment is the class name. For example:

(define-method (add-values (a <number>) (b <number>))

(+ a b))

This defines a method that will only be executed
when it is called with exactly two arguments which
are both numbers. The author can also define alter-
native implementations for different types22:

(define-method (add-values (a <list>) (b <list>))

(append a b))

4.9.2 Implementation

23

Defining a method defines two separate functions:
a generic which is responsible for method dispatch-
ing and the method which contains the body that
the author defined [15, Section 8.6 ”Methods and
Generic Functons”]. A generic is an applicable struct

22While overloading is generally out of scope for this pa-
per, the implementation section will not make sense without
mentioning it.

23TODO: Remove this footnote, this is by no means
unique to this subsection and if it needs to be ad-
dressed it should be done so in an introductory sec-
tion. In most implementation sections I present the bytecode
associated with a function definition and call and describe the
low-level semantics. This would not be useful for this section.
The GOOPS implementation is primarily concerned with func-
tion overloading, not with type checking. Most of the logic
is related to checking the arity of the function and searching
for the function with the ”best fit” type signature (that is,
it prefers more specific child classes over more general parent
classes). The fact that it will produce an error if the user sup-
plies invalid types appears to be incidental to the system, not
a primary purpose. In order to avoid a drawn-out explanation
which would not be relevant to this paper, I refer only to the
source implementation which is relevant to type-checking.

28

4.10 Variadic Function PARTIAL ROUGH ROUGH DRAFT 4 GUILE

(a structure which can be called like a function) which
stores all methods which share a name [12, mod-
ule/oop/goops.scm lines 2045-2245]. When a caller
uses that name with some arguments, the generic
object searches all of the methods associated with
that name for a signature with the best fit [12, mod-
ule/oop/goops.scm lines 1381-1449]. This indirectly
causes an error if the caller provides a set of values
which do not have a compatible type: the searching
process will fail to find a match and print a message
like this one:

ice-9/boot-9.scm:1685:16: In procedure raise-exception:

No applicable method for #<<generic> add-values (2)> in call (add-values foo bar)

The bytecode for calling a function with typed val-
ues is identical to the simple call.

4.9.3 Historical Record

GOOPS was first added to the Guile repository in
version 1.6 [15, Section 9.1.4 ”A Timeline of Selected
Guile Releases”]. Its implementation was based on
STklos, the object system for STK, and it was also
influenced by CLOS, the object system for Common
Lisp [12, module/oop/goops.scm lines 24-25] [15, Sec-
tion 8.0 ”GOOPS”]. The original code 24 looks quite
different from the modern version of the file due to
changes in the core language, bug fixes, and refactor-
ings for performance and readability. However, the
underlying idea of storing all alternative implemen-
tations of a function in a structure that uses a type
signature to implementation map has remained sta-
ble.

24I am tentatively using 4b5d86e0334f6b8c0b37c55cf47a4cd30e7803e0
as the commit which ”adds GOOPS”. This
is somewhat fictitious; 9 commits prior
(fdd70ea97c142dc8db1e3f147ac6f5bd6ae157c6) changed
the major version ”due to the merge of GOOPS”. However,
at the time this commit was made no GOOPS files had been
added; the version number was adjusted in anticipation of the
merge, not after the merge was complete. I am choosing the
other commit as representing the initial add of GOOPS to
the repository because it is the last consecutive commit which
adds or modifies a GOOPS file after the version adjustment.

4.10 Variadic Function

Provided by the ”dotted list” syntax and the #:rest
keyword in a lambda*.

4.10.1 Syntax & Semantics

The #:rest syntax allows an author to define a vari-
adic variable that will contain a (possibly empty) list
of variadic values. The variadic variable must be de-
clared after all other declarations. For example, this
definition and call would have the following value 25:

(define* (add-values a b #:rest variadic-variable)

(apply + a b variadic-variable)

(add-values 1000 2001 1002 2003)

; 6006

The dotted list syntax is similar, except that the
author uses a single period instead of the #:rest key-
word and this syntax works without optargs:

(define* (add-values a b . variadic-variable)

(apply + a b variadic-variable)

(add-values 1000 2001 1002 2003)

; 6006

Other than this syntactic difference, the two meth-
ods of defining a variadic function are identical.

4.10.2 Implementation

For definitions, the only notable difference from the
simple function is the addition of the bind-rest in-
struction near the beginning of the body. This in-
struction takes values from the stack and constructs
a new list which contains all of them; this list is bound
to the variadic variable [12, libguile/vm-engine.c lines
756-783, libguile/vm.c lines 1041-1052].

25As the variadic variable contains a list, the below code uses
apply to destructure the list. This is described in detail in the
section on caller destructuring.

29

PARTIAL ROUGH ROUGH DRAFT

static SCM

cons_rest (scm_thread *thread, uint32_t base)

{

SCM rest = SCM_EOL;

uint32_t n = frame_locals_count (thread) - base;

while (n--)

rest = scm_inline_cons (thread, SCM_FRAME_LOCAL (thread->vm.fp, base + n),

rest);

return rest;

}

For calls, the bytecode is identical to the simple
call.

4.10.3 Historical Record

The dotted list syntax was first described in r2rs,
with the same semantics that are in use today [16,
page 13]. The #:rest syntax was originally used by
other lisp dialects and implementations of Scheme;
Guile provided it in the original release of the op-
targs module in order to ease the transition for
programmers used to those languages [12, commit
0a852b9424f949575afecb19a391023acc63e635 NEWS
lines 849-843]
As described in the section on positional values, the

oldest versions of Guile manually collected argument
values into a Scheme-level list and dispatched based
on the number of values given. This made it trivial
for the interpreter to supply the variadic values by
dropping elements from the front of the list of all
arguments [13, libguile/eval.c lines 1652-1655].
When the VM was added in version 2.0, the

bind-rest instruction was included. It performs es-
sentially the same work as the current implementa-
tion [11, libguile/vm-i-system.c lines 718-732].

Part II

Analysis

30

PARTIAL ROUGH ROUGH DRAFT REFERENCES

Part III

Implementation
References

[1] Alonzo Church. “The Calculi of Lambda-
Conversion”. In: Journal of Symbolic Logic 6.4
(1941). doi: 10.2307/2267126. url: https:
//doi.org/10.2307/2267126.

[2] Python Software Foundation. Python 1.3
Source Code. https://legacy.python.org/
download/releases/src/python-1.3.tar.

gz.

[3] Python Software Foundation. Python 3.12.2
Source Code. https://github.com/python/
cpython.

[4] Python Software Foundation. Python Devel-
oper Guide. https://github.com/python/
devguide.

[5] Python Software Foundation. Python Enhance-
ment Proposals (PEPs). https : / / github .

com/python/peps.

[6] Python Software Foundation. Python HTML
Documentation. https://docs.python.org/
3/archives/python-3.12.2-docs-html.zip.

[7] Programming Languages – C. Standard. Inter-
national Organization for Standardization.

[8] John McCarthy. “Recursive functions of sym-
bolic expressions and their computation by ma-
chine, Part I”. In: Commun. ACM 3.4 (Apr.
1960), pp. 184–195. issn: 0001-0782. doi: 10.
1145/367177.367199. url: https://doi.
org/10.1145/367177.367199.

[9] PEP 671 (late-bound arg defaults),
next round of discussion! https : / /

mail . python . org / archives / list /

python - ideas @ python . org / thread /

UVOQEK7IRFSCBOH734T5GFJOEJXFCR6A/.

[10] GNU Project. Guile 1.3.2 Source Code. https:
//git.sv.gnu.org/git/guile.git.

[11] GNU Project. Guile 2.0.0 Source Code. https:
//git.sv.gnu.org/git/guile.git.

[12] GNU Project. Guile 3.1.2 Source Code. https:
//git.sv.gnu.org/git/guile.git.

31

REFERENCES PARTIAL ROUGH ROUGH DRAFT REFERENCES

[13] GNU Project. Guile Source Code (oldest com-
mit). https://git.sv.gnu.org/git/guile.
git.

[14] GNU Project. Index of /archive/mbox/guile-
devel. https:// lists.gnu.org/ archive /
mbox/guile-devel/.

[15] GNU Project. The Guile Reference Manual.

[16] Revised Revised Report on Scheme or An Un-
Common Lisp. Standard. Massachusetts Insti-
tute of Technology - Artificial Intelligence Lab-
oratory.

[17] Scheme: an Interpreter for Extended Lambda
Calculus. Standard. Massachusetts Institute of
Technology - Artificial Intelligence Laboratory.

32

