
PARTIAL ROUGH ROUGH DRAFT

Preface: This is a partial rough rough draft of
a paper about function arguments. Specifically, it de-
fines more precise language for describing the way
that humans, compilers, and interpreters process the
syntax used to specify things about arguments and
turn that into something meaningful (such as com-
municating an expectation to a programmer calling
the function or generating bytecode which causes the
computer to behave in the manner expected by the
programmer). The final paper is expected to have an
introduction followed by 2 parts.

The first part, currently named ”assessment”, will
describe the features provided by several programming
languages at different levels of abstraction, followed
by analysis of lessons learned by the languages as a
whole. This partial rough rough draft contains only a
description of Python. The final paper will also in-
clude descriptions of C, Rust, Guile, Bash, and Pow-
ershell.

The second part, currently named ”action”,
will describe a mechanism that empowers func-
tion authors, callers, and project managers to
use/require/restrict the set of features which make
sense for their context. This partial rough rough draft
contains no content for the second part.

The current version of the Python section is about
7.5 pages. Assuming that this is representative, the
paper will contain more than 40 pages on language
analysis alone. This is a lot. I also plan to create
a summary paper (less than 10 pages) which will ex-
plain the outcomes of this paper. This summary will
be unsatisfying because it will not properly justify any
of its assertions or conclusions, but that is what the
main paper is for. =)

The introduction is not complete but what is there
is in a pretty good place. I would not be surprised
if there were changes, particularly in the set of fea-
tures that are common to multiple languages, but I
think it works well for the information that I cur-
rently posess. One part that is missing is a ”prior
work” section. From what I have been able to find
there is little research that is directly relevant to the
topic of this paper. There are some things that are
tangentially relevant; for example, one paper counted
the number of times different features were used in
Python projects and this included some of the fea-

tures discussed in this paper. But I expect that most
of the discussion will be about how mathematicians
think about formal parameters and how that has been
translated into computer science.

The Python assessment will require significant
changes to improve presentation, but it is not clear
what direction those changes should go in. Some of
the sections use larger code blocks to demonstrate a
variety of things with comments to guide the reader
while others use smaller code snippets with prose in
between. It is not clear to me which of these is more
suitable for readers, or if there even is a clear ”right
answer” here. Additionally, different feature sections
devote varying amounts of space to the implementa-
tion. Some of this is because different features have
different levels of complexity. But there is no clear
line for where to stop describing a feature 1 and there
might be some inconsistencies right now. I don’t de-
scribe the process of parsing the text and am confident
that this is out of scope for the paper. I also don’t
describe how or where the compiler decides to emit
specific instructions. I am less confident that this is
out of scope. I believe that issues such as this will
become clearer as I assess more languages and start
to implement the mechanism.

Finally, I am aware that the citations are kind of a
mess right now. I am particularly concerned about the
problem of communicating call stacks to the reader.
There are a few places where the functionality I cite
is contained within a helper function, with multiple
functions in between the implementation of the thing
I am directly talking about and the helper. The most
obvious thing to do is place the traces within an ap-
pendix and reference them somehow in the inline ci-
tations, similar to how I am currently providing line
numbers. However, I am already concerned that the
frequency of line numbers is adding too much clutter
to the main document. Additionally, spreading my
bibliographic information across two separate sections
(”References” and ”Appendix X”) seems improper.
I could split each inline citation into separate refer-
ences so that the line numbers and call stacks appear
in the ”References” section, but this would have the

1Arguably, a complete description of any feature might re-
quire a complete description of the entire language

1

PARTIAL ROUGH ROUGH DRAFT

effect of inflating my citation count significantly even
though I am relying on the same number of sources.

I am not aware of any past effort to create a con-
sistent and useful style for citing source code directly.
The closest thing I have found is the guidelines posted
by the FORCE11 research group [6]. However, these
guidelines are focused on citing software which is used
as a tool to perform research. This is an important
issue and I am glad that they are paying attention to
it, but the concern I am trying to address is citing the
implementation of software as a subject of study.

On a related note, I have become aware that the
Python HTML Documentation source is a compiled
version of the RST files in the Doc directory of the
main Python source repository. In keeping with my
citation philosophy of referencing the least compiled
files I will be moving these citations over before the
paper is finished.

2

Comparative Function Arguments

Skyler Ferris

1 Introduction

Functions are one of the core abstractions that pro-
grammers use. These functions - and their authors -
have to communicate with different calling sites - and
their authors - in different contexts. This communi-
cation is performed through the use of arguments.
However, the term ”argument” is used in different
ways depending on the speaker, listener, and context.
For example, people who are working on a new func-
tion written in the C programming language might
use the word ”arguments” to refer to the set of names
that appear between the parantheses in the function
signature. Those same people who are later debug-
ging code which includes a call to that function might
use the word ”arguments” to refer to the values which
are given to the function. This informal use of the
word is sufficient for day-to-day use, but it starts to
break down when examined more closely.

Consider that the Rust programming lanugage al-
lows programmers to specify arguments using one of
two mechanisms. In the common case, programmers
can use a plain name and type:

fn jump_plain(starting: &Point) -> Point {

Point {

x: starting.x,

y: starting.y * 2

}

}

It would not be controvertial to claim that this
function contains one argument. This argument hap-
pens to be associated with a local variable named
starting which is guaranteed to contain data of type
Point.

When it is useful, programmers can also specify an

argument by a pattern 1 and type:

fn jump_pattern(Point {

x: horizontal,

y: vertical

}: &Point)

-> Point {

Point {

x: *horizontal,

y: *vertical * 2

}

}

Does this version contain one argument or two? We
could say that it contains 2 arguments, horizontal
and vertical. In the context of the function defini-
tion this would make sense. However, at the calling
site both appear to accept only a single argument:

jump_plain (&uut);

jump_pattern(&uut);

Consider also the conventions in shell programming
languages. Shell functions might include ”options”
which are arguments that may or may not be related
to the argument that follows it. For example, if a
function encounters an argument with the value ”-
-ignore” then it might interpret the following argu-
ment as a specification of something to ignore. But
if it instead encounters an argument with the value
”--ignore=foo” it might interpret ”foo” as the thing
to ignore. The following argument would then be in-
terpreted in an entirely different manner. In common
speech, it is easy to treat both ”--ignore” and ”foo”

1Technically the ”plain name” is also a pattern, albeit a
very simple one.

3

1.1 Reproducibility and TransparencyPARTIAL ROUGH ROUGH DRAFT 1 INTRODUCTION

as part of the same argument: ”the ignore argument
has value foo”. When the both the name and value
are provided in the same string (”--ignore=foo”), this
is technically accurate from the perspective of the in-
terpreter (it is a single argument). However, when
they are given in diffrent strings (”--ignore” ”foo”) it
is not (they are two arguments which are semantically
related).
The premise of this paper is to resolve the above

inconsistencies by treating an ”argument” as a set
of associations between concrete things. In the Rust
example both versions of the function have a single
argument. In both cases this argument is associated
with a single value at the calling site. However, in
the pattern case the argument is associated with 2
local variables in the function definition. Neither the
values at the calling sites nor the local variables in
the definitions are the arguments: the association be-
tween the values and the variables are the arguments.
In the Bash example, the ”--ignore” and ”foo” values
are just that: values. When the function author uses
a helper program like getopt to process these val-
ues with a given argument specification, both of the
values become associated with the same argument.
This paper will explore the implications of the

premise by describing the common and unique fea-
tures associated with function arguments across sev-
eral languages at different levels of abstraction. Ad-
ditionally, it will present a mechanism implemented
in GNU Guile which frees programmers to create ar-
bitrary associations when specifying arguments. This
will generalize the features provided by various lan-
guages, allowing programmers to use the set of fea-
tures that make sense given the context they are
working in.

1.1 Reproducibility and Trans-
parency

The source code used in example snippets can
be found in the online git repository located
at http://git.sr.ht/ skyvine/comparative-function-
arguments. The source code in this repository con-
tains far more than the snippets provided in this pa-
per, because I checked a number of variations on
things that turned out to be uninteresting for the

purpose of this paper, but I do not feel comfort-
able deleting the information gathered from these at-
tempts (the fact that the outcome is uninteresting is
itself interesting in some contexts). The repository
includes files appropriate for use with GNU Guix to
reproduce the software environment I used while cre-
ating this paper. It pins to a specific revision of the
main Guix channel so that updates do not interfere
with reproducibility. The Makefile within the ”ex-
amples” directory launches a pure shell for the user
so that environmental factors do not interfere with
reproducibility.

The git repository also contains the bibtex file used
to generate references in this paper. This source file
contains additional information which is not present
in the output, such as the SHA256 of referenced tar-
balls and the commit hash of source repositories. 2

1.2 Clarifying Terminology

As mentioned above, this paper defines the term ”ar-
gument” to refer to a set of associations between
concrete code objects, such as values and variables.
Some languages provide similar features under differ-
ent names and sometimes those names do not align
with the vocabulary used by this paper. For example,
different communities use different terms to refer to
the values that shell functions interpret as implying
a value. A shell function might recognize a value ”-
-verbose” to mean that a variable named ”verbose”
should have the value ”true”. I have heard this mech-
anism variously referred to as a flag, a switch, or an
option. This paper refers to this mechanism as an
”implicit value” because the caller uses a name as-
sociated with the argument to imply a value which
does not appear explicitly. A complete least of terms
which describe a feature provided by more than one
language follows:

Positional Value (common name: N/A): These
values are associated with arguments based on the
index of the value in the list of all positional values.

Default Value (common name: Optional Argu-
ment): A value that an author associates with an

2I intend to incorporate this information into the references
in the final version of this paper, but I have not used Latex
before so I will need to learn how to do that.

4

1.2 Clarifying Terminology PARTIAL ROUGH ROUGH DRAFT 1 INTRODUCTION

argument for use when the caller declines to supply
a value.

Named Value (common name: Keyword Argu-
ment, Option Argument 3): These values are associ-
ated with an argument based on a name which the
caller attaches to the value. The argument may be
associated with several synonymous names.

Implicit Value (common names: Switch, Flag,
Option): An argument has an implicit value if the
caller can specify a name associated with the argu-
ment but omit the value. For example, the ubiq-
uitous ”–help” flag in most CLI tools is an implicit
value. An argument with an implicit value may also
have antonyms, which invert the semantics of the
primary name.

Typed Value (common name: N/A): Some lan-
guages allow or require associating a type with an
argument, in which case the value provided by the
caller must be compatible with that type.

Destructuring (common names: Pattern, Un-
packing): Some languages provide a mechanism to
break a composite structure (which might be a struct
or a container such as a list) into its component parts.
In some cases this functionality is available to an au-
thor, who can declare that an argument should have
a specific type but the values within that type should
be bound to separate local variables. In other cases it
might be available to a caller, in which case the val-
ues within a composite structure are associated with
different arguments. It is possible for a language to
provide both of these variants simultaneously.

Variadic Function (common name: N/A): A
function which can accept an arbitrary number of
values. Variadic functions are distinct from argu-
ments with default values because with default values
the author controls the range of acceptable argument
counts. With variadic functions, the caller can pass
in an arbitrarily large number of arguments (physi-
cal limitations notwithstanding). Variadic values are
values which are associated with this feature. For ex-

3The term ”option argument” is not to be confused with
the term ”optional argument”. The former is used by shell
users to refer to an argument that come after an option (such
as ”--ignore” ”foo” in the previous example) while an optional
argument is a term used by scripters and system programmers
to refer to an argument associated with a default value.

ample, a variadic function may require one positional
value at the beginning of the value list. The first value
is not a variadic value but all other values are. A vari-
adic variable is provided by some languages. This
is a local variable bound to some (possibly empty)
aggregate datatype (typically a list) which contains
variadic values.

5

PARTIAL ROUGH ROUGH DRAFT 3 PYTHON

Part I

Assessment

2 Overview

Most of this part is dedicated to describing the fea-
tures of various languages that are relavent to this
paper, in terms defined by this paper. Each of these
sections will start with a summary of the features
provided by the language. Next, it will explain the
background knowledge necessary in order to under-
stand the feature descriptions. This explanation will
include an example of a ”simple function and call”
which serves two purposes. First, it provides the
reader with a concrete example of what analysis looks
like in the context of this language. For example, in
Python ”analysis” means assessing the behavior of
the interpreter and the bytocode emitted by the com-
piler. Second, it provides a point of comparison when
describing features. In the Python analysis, the de-
scription of destructuring discusses how the bytecode
for this feature differs from a call that does not in-
clude destructuring. This keeps each section shorter
because they do not have to explain the baseline they
are being compared to. It also makes it easier for a
reader to focus only on the features that interest them
because they can read the simple call section then the
feature section without having to pick through other
features to find the background information that they
require. Finally, each language analysis will describe
each of the features.

Each feature description will start either with a
statement that the feature is not provided or a state-
ment of how the feature is provided. For example,
in Python positional parameters are the ”default be-
havior”. Tutorials (including the official tutorial con-
tained in the repository) commonly introduce func-
tions by using positional parameters and introduce
”keyword arguments” as a separate feature at a later
point. Therefore, the Python section about posi-
tional values starts with ”provided by default” while
the section about named values starts with ”provided
through keyword arguments”. This helps the reader
understand the feature’s relationship to the language

and clarifies what terminology they should expect to
see if they are reading language documentation, or
what terms they should use if they want to perform a
digital search for more information. After this state-
ment, any distinctive qualities of the feature as pro-
vided by the language will be noted.

Finally, there will be 3 subsections: Syntax, Im-
plementation, and Historical Record. All 3 of these
sections inform the implementation of the mechanism
and perform a service for the reader 4.

The syntax section explains what the source code
looks like when the feature is used. This helps read-
ers who are unfamiliar with the language in question
understand the code snippets in the following subsec-
tions.

The implementation section explains the language
behavior which causes the feature to be provided.
This helps clarify the ”concrete things” that the ar-
gument is associating.

The historical record section discusses, where pos-
sible, the motivation for the feature and lessons
learned from implementation and community re-
sponse. This gives the reader context about the en-
vironment the feature exists in, deepening their un-
derstanding.

The final section synthesizes the information from
the descriptions. When different communities have
similar concerns it will merge these concerns into a
single description. When the concerns are distinct
it will clarify the distinction. It will also look for
opportunities to apply solutions created by one com-
munity to a concern raised by another. Finally, it
will provide a compact table listing all concerns. The
mechanism will either address each of these concerns
or provide justifications for leaving specific concerns
unaddressed.

3 Python

Python provides the following features:

• Positional Value

4It should go without saying that the author is also a reader,
albeit a particularly invested one. =)

6

3.1 Bytecode PARTIAL ROUGH ROUGH DRAFT 3 PYTHON

– Callers typically decide between naming or
positioning values but authors can restrict
this decision.

– Positional values must precede named val-
ues.

• Default Value

• Named Value

• Typed Value

• Caller Destructurig

– Restricted to iterables and dictionaries.

• Variadic Functions

– One or two variadic variables will be bound
to a list for positional values and/or a dic-
tionary for named values.

Python used to provide author destructuring for
tuples, but this was removed in version 3.0.

3.1 Bytecode

Python has a compiler which produces bytecode
[3, internals/compiler.rs section ”Abstract”], and an
interpreter which executes the bytecode [3, inter-
nals/interpreter.rst section ”Introduction”]. Argu-
ment and return values are given using a stack man-
aged by the interpreter; instructions may modify or
move these values, even if this is not the primary
purpose of the instruction [3, internals/interpreter.rst
section ”The Evaluation Stack”].
There are 2 families of instructions that are used

throughout the examples in this section. The LOAD

family puts values on the stack from different loca-
tions depending on the instruction. The CALL family
initiates a function call after the stack has been pre-
pared. There are also example-specific instructions
which will be explained alongside the relevant exam-
ple.
Note: This section omits bookkeeping instructions

that are not topically relevant. For example, when
calling a non-method function (one which is not asso-
ciated with an object instance), the interpreter pushes

NULL onto the stack before pushing the function. This
instruction, and similarly uninteresting instructions,
are omitted for brevity.

3.1.1 LOAD family

Instructions prefixed with LOAD retrieve a value from
some location (depending on the instruction) and put
it onto the stack. Each instruction recieves an inte-
ger which represents an index into a C-level array.
Which array is referenced depends on the instruc-
tion. When the array contains variable names, the
instruction also retrieves the value associated with
that name. The below table explains the contents of
the array that each instruction references.

LOAD CONST Constant values which appear liter-
ally or implicitly in source code [2,
Doc/library/dis.rst lines 964-966].

LOAD FAST Names of local variables which are
guaranteed to be initialized. [2,
Doc/library/dis.rst lines 1253-1259,
Lib/inspect.py line 514]

LOAD NAME Names of non-local variables. If
a local variable exists with the
same name as a non-local variable
then the value bound to the lo-
cal variable will be returned. [2,
Doc/library/dis.rst lines 969-972,
Lib/inspect.py line 511].

3.1.2 CALL Family

These instructions tell the interpreter to call a func-
tion. This paper views this family as rooted in the
plain CALL instruction, with all others being variants
on this core instruction. When it needs to reference
a behavior which occurs when a function is called,
it examines only the plain CALL instruction and as-
sumes that other instructions behave similarly unless
the purpose of the variant is to change that specific
behavior.

7

3.2 Simple Function and Call PARTIAL ROUGH ROUGH DRAFT 3 PYTHON

CALL Receives an integer indicating the num-
ber of argument values provided by the
caller. The stack will contain the
function to call followed by the argu-
ment values in separate stack locations.
[2, Doc/library/dis.rst lines 1398-1410
Python/ceval.c lines 1314-1536].

3.2 Simple Function and Call

def add_values(a, b):

return a + b

add_values(1000, 1001)

The bytecode generated for the call to add values

performs 3 tasks. First, it pushes the function onto
the stack. Next, it pushes literal values which will
become associated with arguments. Finally, it calls
the function.

LOAD_NAME 0 (add_values)

LOAD_CONST 1 (1000)

LOAD_CONST 2 (1001)

CALL 2

The bytecode generated for the definition is sim-
ilar. It uses LOAD FAST (instead of LOAD NAME) to
refer to the variables associated with arguments and
BINARY OP (instead of CALL) to use the built-in + op-
erator.

LOAD_FAST 0 (a)

LOAD_FAST 1 (b)

BINARY_OP 0 (+)

3.3 Positional Value

Provided by default. Generally, callers can choose
whether to provide values by name or position when
they make the call. All positional values must pre-
cede all named values [5, reference/expressions.html
section 6.3.4 ”Calls”]. Function authors can specify
that some arguments with only receive their value by
position. These are referred to as ”positional-only
arguments”.

3.3.1 Syntax

Callers specify positional values by providing a
comma-separated list of values. Function authors
specify positional-only arguments by listing a literal
/ after the final positional-only argument [5, ref-
erence/compound stmts.html section 8.7 ”Function
Definitions”]:

def add_values_mixed(position, /, either):

return position + either

valid

add_values_mixed(1000, 1001)

add_values_mixed(1000, b=1001)

invalid: the value for argument

"position" cannot be given by name

add_values_mixed(position=1000, \

either=1001)

3.3.2 Implementation

The bytecode for positional values is identical to the
bytecode for the simple call. Python stores the values
of local variables in the C-level array ‘localsplus‘. The
CALL instruction copies positional arguments from
the stack into this array [2, Python/ceval.c lines 1341-
1353].

The bytecode for function definitions is iden-
tical regardless of the presence of positional-only
arguments. The restriction is enforced within
the CALL instruction. In particular, the helper
function positional only passed as keyword uses
the co posonlyargcount and co localsplusnames

members of the code object. These variables
track the number of positional-only arguments [2,
Doc/library/inspect.rst lines 180-181] and the names
of all arguments [2, Include/cpython/code.h line 155]
respectively. If any names of positional-only argu-
ments appear as keyword arguments then the helper
raises an error. [2, Python/ceval.c lines 1182-1244].
Note that the helper is only called if the function does
not include a variadic variable for named values [2,
Python/ceval.c lines 1417-1431].

8

3.4 Default Value PARTIAL ROUGH ROUGH DRAFT 3 PYTHON

3.3.3 Historical Record

Positional values have always been available in
Python and requires no special syntax to use.5

PEP 570 introduced positional-only arguments [4,
peps/pep-0570.rst]. It gives several justifications for
the change, most of which are concerned with main-
taining a healthy ecosystem. There are two relevant
6 ecosystem harms the PEP is concerned with: inap-
propriate use of value names by callers and increased
maintenance burden for library authors.

Inappropriate use of value names includes using
non-meaningful names, such as a math function that
takes one argument (the sqrt function takes one ar-
gument named x). It also includes providing values
in an illogical order, such as calling the range func-
tion and supplying the stop value before the start

value.

The increased maintenance burden occurs because
all argument names are automatically and irrevoca-
bly added to the API surface of all libraries. It could
be the case that a library author wants to implement
a change which should be non-breaking in principle,
but prompts a variable name change for clarity. This
variable name change transforms the overall change
into a breaking change.

The PEP is also concerned with functions that in-
clude a variadic variable for named parameters. For
these functions, any non-variadic variables restrict
the domain of the variadic variable, as their names
will be associated with the distinct variable rather
than the variadic one.

Finally, the PEP notes the curious case of the
range function, which the PEP describes as accept-
ing ”an optional parameter to the left of its required
parameter.” In particular, if the range function only
receives a single argument it is interpreted as the end

5Unfortunately, positional values are assumed to be the de-
fault method of passing arguments by most programmers, in-
cluding language authors, so there is no good citation for this
assertion.

6There are also several concerns mentioned which are spe-
cific to Python and/or its implementation. For example, it
references PEP 399 which requires that pure Python code and
C extensions have the same expressive power. While impor-
tant to the Python community, these concerns are not relevant
to this paper.

of the range, but if it receives 2 arguments then the
first is interpreted as the start while the second is in-
terpreted as the end. This concern does not appear
to be addressed by PEP 570 7.

3.4 Default Value

Provided by default argument values.

3.4.1 Syntax

Function authors can define a default value by adding
a literal = after the name of an argument, then the
value [5, reference/compound stmts.html section 8.7
”Function Definitions”].

def add_values(mandatory, optional=2000):

return mandatory + optional

valid

add_values(1000)

add_values(1000, 1001)

invalid: the first argument is not

associated with a default value

add_values()

3.4.2 Implementation

Default values do not impact the bytecode generated
for the definition or the call: they are both identical
to the simple call. Instead, the CALL instruction re-
trieves default values from the code object and uses
them when necessary [2, Python/ceval.c lines 1314-
1536, trace call TO initialize locals].

3.4.3 Historical Record

Default values were added in version 1.0.2 [2,
Misc/HISTORY lines 32809-32811]. There is addi-
tionally a note that default values ”would now be
quite sensible” in the version 0.9.4 release notes. This

7At least, I do not see anything that addresses it when
I read the PEP and the implementation of range still in-
spects the number of provided arguments manually [2, Ob-
jects/rangeobject.c lines 81-120].

9

3.5 Named Value PARTIAL ROUGH ROUGH DRAFT 3 PYTHON

version changed argument processing so that func-
tions receive all arguments as separate values, rather
than as a single tuple [2, Misc/HISTORY lines 34550-
34639].
PEP 671 proposes adding a feature which would al-

low function authors to provide an expression which
will produce a default value at call time (”late eval-
uation”) [4, peps/pep-0671.rst]. Currently, default
values must be static/constant values which are de-
termined when the function is defined. The mailing
list discussion includes several disagreements, includ-
ing whether or not it is appropriate for a function
signature to contain un-inspectable objects and tech-
nical difficulties about scoping rules for late evaluated
values. The proposal is still in the ”draft” state, so
it might be added in the future (possibly after trivial
or significant changes to the proposal), but there has
been no activity on the mailing list since 2021. [7]

3.5 Named Value

Provided through keyword arguments. Generally,
callers can choose whether to provide values by name
or position when they make the call. All named
values must proceed all positional values [5, refer-
ence/expressions.html section 6.3.4 ”Calls”]. Func-
tion authors can specify that some arguments will
only receive their value by name. These are referred
to as ”keyword-only arguments”.

3.5.1 Syntax

Callers provide named values by writing first a sym-
bolic name, then a literal =, then the value. [5, ref-
erence/expressions.html section 6.3.4 ”Calls”]. Func-
tion authors specify keyword-only arguments by list-
ing a literal * before the first keyword-only argu-
ment. [5, reference/compound stmts.html section 8.7
”Function Definitions”].

def add_values_mixed(either, *, named):

return either + named

valid

add_values_mixed(named=1001, either=1000)

add_values_mixed(1000, named=1001)

invalid: the value for argument "named"

must be given by name

some_function(1000, 1001)

invalid: named values cannot appear

before positional values

some_function(named=1001, 1000)

3.5.2 Implementation

The bytecode for function definitions is iden-
tical regardless of the presence of keyword-
only arguments. The restriction is enforced
within the CALL instruction. In particular,
the helper function initialize locals checks
that the number of positional arguments is
not more than expected [5, Python/ceval.c lines
1458-1462, trace call TO initialize locals], by check-
ing the co argcount member which tracks the
number of arguments which may be positional
[2, Doc/library/inspect.rst lines 146-149]. [2,
Python/assemble.c line 556].

Bytecode for calls which use named values differ
significantly from the simple call. For example, con-
sider this code:

def add_values(a, b):

return a + b

add_values(b=1001, a=1000)

add_values(1000, b=1001)

The bytecode for the first call differs from the sim-
ple call by adding the KW NAMES instruction prior to
the CALL instruction:

LOAD_NAME 1 (add_values)

LOAD_CONST 6 (1001)

LOAD_CONST 5 (1000)

KW_NAMES 8 ((’b’, ’a’))

CALL 2

KW NAMESmarks the given constant, in this case the
tuple (’b’, ’a’), as a set of argument names to be

10

3.6 Implicit Value PARTIAL ROUGH ROUGH DRAFT 3 PYTHON

used by CALL [2, Python/bytecodes.c lines 2601-2605,
2644, 2869–2692, 2706–2709]. Then, the CALL in-
struction determines which values belong to which ar-
guments by corresponding their respective positions
on the stack and in the tuple. [2, Python/ceval.c lines
1383-1384].

The process is similar when some values are pro-
vided by position and others by name. The second
call above does not have any additional instructions
to handle this case:

LOAD_NAME 2 (add_values_mixed)

LOAD_CONST 5 (1000)

LOAD_CONST 6 (1001)

KW_NAMES 12 ((’named’,))

CALL 2

The CALL instruction infers which value is named
based on the restriction that positional values must
precede named values [2, Python/ceval.c lines 1383-
1384].

3.5.3 Historical Record

Named values were first introduced in Python 1.3
[1, Doc/tut.tex lines 3540-3626]. The feature was
based on the similar feature provided by Modula-
3 [1, Doc/tut.tex lines 3584-3586]. While keyword-
only arguments (discussed later in this section) were
added afterwards, the core syntax and semantics of
keyword-only arguments have remained unchanged.

PEP 3102 introduced keyword-only arguments. It
provides a single justification for the change: variadic
functions cannot make use of default values. The
PEP gives the following example:

def sortwords(*words, case_sense=False):

pass

If the value associated with case sense can be pro-
vided positionally then it must be provided in every
call even if the caller wants the default value of False
8.

8Unless the caller wants to sort the empty list. =)

3.6 Implicit Value

This feature is not provided by Python.

3.7 Typed Value

Provided through type hinting. The Python compiler
and interpreter do not change their behavior based
on type hints. However, they do guarantee that the
hints will be available to external tools and provide
supporting infrastructure to help the tools work cor-
rectly. Both static analyzers and runtime checkers
can make use of annotations.

3.7.1 Syntax

Type hints are specified using function annotations,
as defined in PEP 3107. This means that function
authors add a colon and type name after the variable
name associated with the argument:

def typed_argument(x: str):

pass

3.7.2 Implementation

Annotations are stored as metadata in the Python
object which represents the function. Libraries can
access them through the annotations property,
which contains a dictionary [4, peps/pep-3107.rst,
”Accessing Function Annotations”].

3.7.3 Historical Record

The foundations for type hinting were added in PEP
3102, which defines the syntax for function annota-
tions [4, peps/pep-3102.rst]. The Python developers
then waited for external community-driven tools to
experiment with different type-checking approaches.
Eventually, they took lessons learned from the com-
munity and created a set of recommendations in
PEPs 482, 483, and 484 [4, peps/pep-0484.rst, ”Ab-
stract”]. Much of their content addresses type theory
issues, such as generics, variance, and special types
like Any. Since this initial introduction there have
been a number of PEPs which further clarify best
practices or provide syntactic improvements to type

11

3.8 Destructing (caller) PARTIAL ROUGH ROUGH DRAFT 3 PYTHON

specifications. However, the core mechanism that
this paper is concerned with - associating a type with
an argument, regardless of how that type is specified
- remains unchanged.

3.8 Destructing (caller)

Provided through argument unpacking. Caller de-
structuring is only available for iterables and map-
pings.

3.8.1 Syntax

This feature allows a caller to prefix one or more iter-
ables with * in order to translate their contents into
a set of positional values, and/or prefix one or more
mappings with ** to translate their contents into a
set of named values. For mappings, keys must strings
naming an argument. [5, reference/expressions.html
section 6.3.4 ”Calls”]

def add_values(a, b, c):

return a + b + c

all of the below calls are equivalent

to this:

add_values(1000, 1001, 1002)

destructure an iterable into positional

values

l = [1000, 1001, 1002]

add_values(*l)

destructure multiple iterables into

positional values

first_part = [1000]

second_part = [1001, 1002]

add_values(*first_part, *second_part)

destructure a mapping into named

values

d = { ’a’: 1000, ’b’: 1001, ’c’: 1002 }

add_values(**d)

destructure multiple mappings into

named values

first_part = { ’b’: 1001 }

second_part = { ’a’: 1000, ’c’: 1002 }

add_values(**first_part, **second_part)

3.8.2 Implementation

The difference between the simple call and a call
which includes destructuring is best explained by
starting with the final instruction. While the sim-
ple call uses the plain CALL instruction a destruc-
turing call uses the CALL FUNCTION EX instruction.
CALL FUNCTION EX receives either 0 or 1 which tells
it whether or not there is a mapping to destructure
[2, Doc/library/dis.rst lines 1398-1410].

When it receives 1, there is a mapping to destruc-
ture which will be on the top of the stack. While
the caller can use any mapping (and any number of
mappings), CALL FUNCTION EX will always see a sin-
gle dictionary when it executes (the process which
ensures this is discussed in more detail later in this
section). The dictionary is turned into a set of key-
word arguments by interpreting the keys as names
identifying arguments. [2, Objects/call.c lines 1029-
1053]

The next item on the stack is an iterable to de-
structure. In this case, CALL FUNCTION EX might see
any iterable on the stack. If the iterable is not a tuple
it will convert it into a tuple [2, Python/bytecodes.c
lines 3198-3207]. The elements of this tuple will be
used as positional values. [2, Python/bytecodes.c line
3219].

When CALL FUNCTION EX receives 0 the process is
similar, except that the top element of the stack is
an iterable and there is no mapping.

The compiler ensures that CALL FUNCTION EX only
receives dictionaries (rather than the arbitrary map-
ping object provided by the caller) with two instruc-
tions. First, it issues a BUILD MAP instruction to place
a new dictionary on the stack [2, Doc/library/dis.rst
lines 1015-1023]. Then it adds the keys and values of
each mapping object into this dictionary by repeat-
edly calling the DICT MERGE instruction. For exam-
ple, this code:

add_values(*d)

12

3.9 Destructuring (author) PARTIAL ROUGH ROUGH DRAFT 3 PYTHON

Compiles to this bytecode (note that BUILD MAP

receives the value 0 to indicate that it is building an
empty dictionary):

LOAD_NAME 0 (add_values)

LOAD_CONST 13 (())

BUILD_MAP 0

LOAD_NAME 3 (d)

DICT_MERGE 1

CALL_FUNCTON_EX 1

When named values are provided separately from
the destructured values, the freshly created dictio-
nary is prepopulated with those values. For example,
this code:

d = { ’b’: 1001, ’c’: 1002 }

add_values(a=1000, **d)

Compiles to this bytecode (note that in this case,
BUILD MAP receives the value 1 to indicate that there
is one key-value pair on the stack):

LOAD_NAME 1 (add_values)

LOAD_CONST 17 (())

LOAD_CONST 11 (’a’)

LOAD_CONST 3 (1000)

BUILD_MAP 1

LOAD_NAME 4 (d)

DICT_MERGE 1

CALL_FUNCTION_EX 1

When the caller provides multiple destructured it-
erables, or provides literal positional values in addi-
tion to one or more destructured iterables, the com-
piler issues instructions to merge them into a list,
then converts that list into a tuple. For example,
this code:

t0 = (1001,)

t1 = (1002,)

add_values(1000, *t0, *t1)

Compiles to this bytecode:

LOAD_NAME 1 (add_values)

LOAD_CONST 3 (1000)

BUILD_LIST 1

LOAD_NAME 4 (t0)

LIST_EXTEND 1

LOAD_NAME 5 (t1)

LIST_EXTEND 1

CALL_INTRINSIC_1 6 (INTRINSIC_LIST_TO_TUPLE)

CALL_FUNCTION_EX 0

If the caller provides only a single iterable to de-
structure, and no literal positional values, this it-
erable is placed onto the stack without modifica-
tion and the tuple creation logic contained within
CALL FUNCTION EX itself is triggered.

3.8.3 Historical Record

When argument unpacking was first introduced in
version 1.6 [2, Misc/HISTORY lines 26740-26743],
it only allowed callers to unpack a single iter-
able and/or a single mapping. For example,
the call add values(*first part, *second part)

would have been illegal. PEP 448 expanded argu-
ment unpacking so that multiple values can be de-
structured in the same call [4, peps/pep-0448.rst].
The rationale given for this change was enhanced
readability, as previously callers would either need
to build iterables/dictionaries separately or destruc-
ture them manually, adding additional lines of code
which are semantically sparse.

3.9 Destructuring (author)

While python does not currently support autho-
rial destructuring, it did so prior to version 3.0 [4,
peps/pep-3113.rst]. It allowed authors to declare
that arguments should receive tuples whose values
would be bound to separate local variables:

def distance((x1, y1), (x2, y2)):

pass

This function would require that callers pass in 2
values which are both tuples containing 2 elements.
The values from the first tuple would be bound to
local variables x1 and y1, while the values from the
second would be bound to x2 and y2.

13

3.10 Variadic Function PARTIAL ROUGH ROUGH DRAFT 3 PYTHON

The functionality was removed through PEP 3113.
The rationale includes multiple implementation is-
sues which are important to the Python community
but not relevant to this paper.

3.10 Variadic Function

Provided by arbitrary argument lists and dictionar-
ies. Positional values are collected by the former
while named values are collected by the latter.

3.10.1 Syntax

Function authors specify variadic-ness by specifying
the name for one or two variadic variables. The name
for the variadic list must be prefixied by a * while the
name for the variadic dictionary must be preceeded
by a ** [5, reference/compound stmts.html section
8.7 ”Function Definitions”].

from itertools import chain

def add_values(*pos_vals, **named_vals):

return sum(chain(pos_vals, \

named_vals.values()))

All of these values appear in the

pos_values list

add_values(1000, 1001, 1002, 1003)

All of these values appear in the

named_values dictionary

add_values(named_val0=1000,

named_val1=1001,

named_val2=1002,

named_val3=1003)

The values 1002 and 1003 appear in the

pos_vals list while the names and

values named_arg0=1000 and

named_arg1=1001 appear in the

named_vals dictionary

add_all_values(1002,

1003,

named_val0=1000,

named_val1=1001)

3.10.2 Implementation

The interpreter tracks which positional values are
also variadic values by checking the co argcount

variable associated with the function’s code ob-
ject. Remaining positional arguments are moved
into the appropriate variadic variable, if it exists
[2, Python/ceval.c lines 1355-1376]. It distinguishes
variadic named values from non-variadic named val-
ues by checking if the name is expected; the inter-
preter already has to keep track of this information
because an unrecognized value name is considered
an error for non-variadic functions [2, Python/ceval.c
lines 1378-1455].

3.10.3 Historical Record

PEP 468 updated the variadic variable for named val-
ues such that the author can retrieve the syntactic
order in which the values were given. The rationale
given for this change is that some users are develop-
ing APIs where order matters, such as serialization.
[4, peps/pep-0468.rst]

14

PARTIAL ROUGH ROUGH DRAFT REFERENCES

Part II

Action
References

[1] Python Software Foundation. Python 1.3 Source
Code. https : / / legacy . python . org /

download/releases/src/python-1.3.tar.gz.

[2] Python Software Foundation. Python 3.12.2
Source Code. https://github.com/python/
cpython.

[3] Python Software Foundation. Python Devel-
oper Guide. https : / / github . com / python /
devguide.

[4] Python Software Foundation. Python Enhance-
ment Proposals (PEPs). https://github.com/
python/peps.

[5] Python Software Foundation. Python HTML
Documentation. https://docs.python.org/
3/archives/python-3.12.2-docs-html.zip.

[6] Clark T et al. Katz DS Chue Hong NP. Rec-
ognizing the value of software: a software ci-
tation guide. https : / / f1000research . com /
articles/9-1257/v2.

[7] PEP 671 (late-bound arg defaults),
next round of discussion! https : / /

mail . python . org / archives / list /

python - ideas @ python . org / thread /

UVOQEK7IRFSCBOH734T5GFJOEJXFCR6A/.

15

